

Vidyasagar College of Arts and Science

Approved by UGC, Affiliated to Bharathiar University & Re-Accredited by NAAC
Udumalpet - 642122

NH83Udumalpet-PollachiRoad, Udumalpet-642122 Cell :

98430 24997, 97877 21960

e-mail :

vcasudt@yahoo.com
www.vdyasagarcollege.org

Course: B.Com

Batch : 2024-27

Semester:IV

SUBJECT : COMPUTER APPLICATION IN BUSINESS

SYLLABUS

COMPUTER APPLICATION IN BUSINESS

UNIT I

Computer: Introduction - Meaning-Characteristics-Generations-Types of Digital Computers- Components of Computer-Input,Storage, and OutputDevices-Uses of Computer in Modern Business.

UNIT II

Software: Meaning - Types of software- Operating Systems: Meaning - Functions- Types-Programming Language- Compilers and Interpreters- Database Processing: Data Vs Information-Database Processing: Data Vs Information-Database Management Systems: Meaning- Components-uses- Limitations-Types.

UNIT III

Management Information System: Meaning -Characteristics-Functional Management Information Systems : Financial- Accounting-Marketing-Production-Humanresource-Business Process Outsourcing.

UNIT IV

Networking - Meaning - Types - Internet: Meaning-Internet Basis-World Wide Web- Interent Access - Internet Addresing - Search Engines - Electronic Mail.

UNIT V

Recent Trends: Industry 4.0-Meaning , Definition, Goals and Design principles-Big Data Analytics and Artificial Intelligence-Meaning and Definition-Why?-History- Internet of Things-Applications of IOT-Cyber Security-Cyber Crime and its classification.

UNIT-I

Introduction of Computer

A computer is an electronic machine that takes input, processes the data, and gives output. It works very fast and can store a large amount of information. Computers help us to perform tasks like typing, calculating, browsing the internet, designing, and many more.

Key Points

A computer is an electronic device.

It works on the principle of Input → Process → Output.

It can perform tasks accurately and quickly.

It can store, retrieve, and process data.

Used in many fields like education, banking, business, hospitals, and communication.

A computer is a programmable electronic device used to solve problems and perform different operations. It accepts data as input, processes it using a set of instructions (programs), and produces meaningful information as output. Computers have become an essential part of modern life due to their speed, accuracy, and storage capacity.

Characteristics of Computer

1. Speed

Computers can perform millions of calculations in a few seconds.

2. Accuracy

They give correct and precise results if the input data is correct.

3. Storage Capacity

Computers can store a huge amount of data and information for future use.

4. Automation

Once instructions are given, a computer works automatically without human help.

5. Diligence

Computers never get tired or bored. They can work continuously without losing efficiency.

6. Versatility

Computers can do different tasks like calculations, graphics, gaming, communication, etc.

7. Reliability

Computers give consistent and dependable results over time.

8. Multi-tasking

A computer can perform multiple tasks at the same time, like playing music while browsing.

Generations of Computers

Computers are classified into five generations based on the technology used, size, speed, and efficiency.

1) First Generation (1940–1956)

Technology: Vacuum tubes

Features:

Very large in size

Slow processing

Produced a lot of heat

High electricity consumption

Examples: ENIAC, UNIVAC

2) Second Generation (1956–1964)

Technology: Transistors

Features:

Smaller and faster than vacuum tube computers

More reliable

Less heat production

Examples: IBM 7094, CDC 1604

3) Third Generation (1964–1971)

Technology: Integrated Circuits (ICs)

Features:

Faster, smaller, and more efficient

Lower cost

Used keyboards and monitors

Examples: IBM 360 series

4) Fourth Generation (1971–Present)

Technology: Microprocessor

Features:

Very fast and powerful

Small and portable devices

Personal computers (PCs) became common

Examples: Intel 4004, modern computers, laptops

5) Fifth Generation (Present & Future)

Technology: Artificial Intelligence (AI), advanced processors

Features:

Works with AI and machine learning

High processing speed

Natural language processing

Examples: AI-based systems, robotics, supercomputers

Types of digital computer

Here are the Types of Digital Computers explained in a simple and exam-friendly way:

Types of Digital Computers

Digital computers are classified mainly into four types based on their size, speed, and processing power.

1) Microcomputers (Personal Computers)

Smallest type of digital computer

Used by individuals at home, school, or office

Affordable and easy to use

Examples: Desktop, Laptop, Tablet, Smartphone

2) Minicomputers

More powerful than microcomputers

Used by small and medium-sized businesses

Can support multiple users at the same time

Examples: PDP-11, VAX

3) Mainframe Computers

Very powerful and large

Used by big organizations for processing huge data

Can handle thousands of users at once

Examples: IBM zSeries

4) Supercomputers

Fastest and most powerful computers

Used for complex scientific calculations

Used in weather forecasting, space research, nuclear research

Examples: PARAM, Cray, Summit

If you want, I can also give short answer, 2-mark, or 5-mark versions.

Components of computer

Here is a simple and clear explanation of the Components of a Computer (perfect for exams):

Components of a Computer

A computer has two main components:

Hardware

Software

1) Hardware

Hardware refers to the physical parts of a computer that you can see and touch.

Main Hardware Components

a) Input Devices

Used to enter data into the computer.

Examples: Keyboard, Mouse, Scanner, Microphone.

b) Output Devices

Used to display or give results to the user.

Examples: Monitor, Printer, Speakers.

c) CPU (Central Processing Unit)

Called the “brain of the computer”.

Performs calculations and processing.

The CPU has two main parts:

ALU (Arithmetic Logic Unit) – does calculations

CU (Control Unit) – controls operations

d) Memory / Storage

Used to store data and programs.

Two types:

Primary Memory: RAM, ROM

Secondary Memory: Hard disk, SSD, Pen drive, CD

e) Motherboard

Main circuit board that connects all components.

2) Software

Software refers to programs that run on the hardware.

Types of Software

a) System Software

Controls and operates the computer.

Examples: Windows, macOS, Linux.

b) Application Software

Programs used for specific tasks.

Examples: MS Word, PowerPoint, Browsers, Games.

Short Summary

Hardware = Physical parts

Software = Programs

CPU = Brain of computer

Input → Processing → Output

Memory = Stores data

1. Input Devices

Input devices are used to enter data and instructions into the computer.

Common Input Devices

Keyboard – used for typing text and numbers

Mouse – used to point, click and select

Scanner – converts documents/photos into digital form

Microphone – input for sound and voice

Webcam – captures images and videos

Barcode Reader – reads barcode information

Touchscreen – works as both input and output

2. Storage Devices

Storage devices are used to store data, files, and programs permanently or temporarily.

Types of Storage Devices

a) Primary Storage (Internal)

RAM (Random Access Memory) – temporary memory

ROM (Read Only Memory) – permanent instructions

b) Secondary Storage (External)

Hard Disk (HDD/SSD)

Pen Drive (USB Flash Drive)

Memory Card

CD/DVD

External Hard Drive

3. Output Devices

Output devices display or produce the results of processing.

Common Output Devices

Monitor – displays text, images, and videos

Printer – produces printed documents

Speakers – output sound

Headphones – audio output

Projector – displays visuals on a large screen

Uses of computer in modern business

Here is a simple and exam-friendly answer for Uses of Computers in Modern Business:

Uses of Computer in Modern Business

Computers play an important role in modern business by improving speed, accuracy, and efficiency. They help in managing information, communication, finance, and customer services.

1. Accounting and Finance

Computers are used for maintaining accounts, preparing financial statements, budgeting, and online transactions.

2. Communication

Businesses use email, video conferencing, and messaging apps for fast communication with employees and customers.

3. Data Storage and Management

Large amounts of business data can be stored, updated, and retrieved easily using computers.

4. Marketing and Advertising

Computers help in creating digital advertisements, social media marketing, websites, and online promotions.

5. Inventory Management

Computers track stock levels, orders, and deliveries, helping businesses avoid shortages or excess stock.

6. Customer Service

Chat systems, CRM software, and online support help businesses provide quick responses to customers.

7. E-Commerce

Online shopping, digital payments, and order processing are all handled through computers.

8. Human Resource Management

Computers help in employee records, payroll, recruitment, training, and performance tracking.

9. Production and Manufacturing

Used in automation, robotics, quality control, and design (CAD/CAM).

10. Decision Making

Managers use computers to analyze data, prepare reports, and take better business decisions.

UNIT - II

Software – Meaning

Software is a set of instructions or programs that tells a computer what to do.

It helps the computer to perform tasks like calculations, writing documents, playing videos, browsing the internet, etc.

In short:

Types of Software

Software is mainly divided into two types:

1. System Software

This software controls the overall working of the computer.

It manages hardware and provides a base for other software to run.

Examples:

Operating System (Windows, Linux, macOS)

Device Drivers

Utility Programs (antivirus, disk cleanup)

Functions:

Controls hardware

Manages memory

Runs application software

2. Application Software

This software is used to perform specific tasks for the user.

Examples:

MS Word, Excel

Web browsers (Chrome, Firefox)

Media players

Games

Mobile apps

Functions:

Writing documents

Watching videos

Browsing internet

Making presentations, etc.

Software:

A set of instructions that tells the computer how to perform tasks.

Types:

System Software – Controls hardware and runs the computer.

Application Software – Helps users perform specific tasks

Operating System (OS)

Meaning

An Operating System is a system software that manages the computer hardware and provides an environment for application programs to run.

It acts as a bridge between the user and the computer.

Short meaning:

OS is software that controls the entire working of the computer.

Functions of Operating System

Process Management

Controls running programs

Allocates CPU time

Memory Management

Manages RAM

Allocates and frees memory for programs

File Management

Creates, saves, deletes, and organizes files/folders

Device Management

Controls devices like printer, keyboard, mouse

Uses device drivers

Security and Protection

User passwords

Protects data and resources

User Interface

Provides GUI (Windows) or CLI (Command Prompt)

Helps user interact with the system

Error Detection & Handling

Detects system errors and responds safely

Types of Operating Systems

1. Single User OS

Allows only one user at a time.

Examples: Windows 10 Home, MS-DOS

2. Multi-User OS

Many users can use the computer at the same time.

Examples: UNIX, Linux server

3. Single Tasking OS

Can run only one task at a time.

Example: Early mobile OS, MS-DOS

4. Multi-Tasking OS

Can run multiple programs at the same time.

Examples: Windows, macOS, Linux

5. Real-Time OS (RTOS)

Used in systems requiring quick and immediate response.

Examples: Air traffic control, robotics OS

6. Distributed OS

Uses multiple computers connected by a network to share resources.

Example: LOCUS, Amoeba

7. Mobile Operating Systems

Designed for smartphones and tablets.

Examples: Android, iOS

A programming language is a language used to write instructions for a computer

Types: Machine language, Assembly language, High-level language.

Types of Programming Languages

1. Machine Language

First-generation language

Written in binary (0s and 1s)

Very fast but difficult to write

2. Assembly Language

Second-generation language

Uses short codes or mnemonics (e.g., ADD, SUB)

Easier than machine language but still hardware dependent

3. High-Level Language

Third-generation language

Uses English-like words

Easy to learn and portable

Needs a compiler or interpreter

Examples: C, C++, Java, Python, BASIC

Other Categories

a. Procedural Languages

Step-by-step instructions

Examples: C, Pascal

b. Object-Oriented Languages

Uses objects and classes

Examples: Java, C++, Python

c. Scripting Languages

Used for automation or web scripts

Examples: JavaScript, Python, PHP

.Compilers and Interpreters

Meaning

Both compiler and interpreter are language translators that convert high-level language programs (like C, Java, Python) into machine language (0s and 1s).

Compiler: Translates the whole program at once into machine code.

Interpreter: Translates and executes the program line by line.

Compiler

Meaning

A compiler translates the entire program at once into machine code before execution.

Features

Converts whole program → machine code

Shows all errors after translation

Execution is fast

Generates an executable file (.exe)

Examples

C compiler, C++ compiler, Java compiler

Interpreter

Meaning

An interpreter translates and executes the program line by line.

Features

Converts one line at a time

Shows errors line by line

Execution is slower

Does not create an executable file

Examples

Python interpreter, JavaScript interpreter, Ruby interpreter

Difference Between Compiler and Interpreter

Compiler

Translates entire program at once

Interpreter

Translates line by line

Errors shown after full check	Errors shown immediately
Faster execution	Slower execution
Creates an executable file	No executable file
Used by C, C++	Used by Python, JavaScript

Database Processing – Data vs Information

1. Data

Data is raw facts and figures that have no clear meaning by themselves.

It may be numbers, text, symbols, or observations.

Examples:

85, 90, 95

"Raj", "12/12/2024", "Blue"

Short meaning:

Data = Raw facts.

2. Information

Information is processed, organized, or meaningful data.

It helps in decision-making.

Examples:

“Raj scored 85, 90, 95 in three tests.”

“Average score = 90.”

Short meaning:

Information = Processed data with meaning.

Difference Between Data and Information

Data	Information
Raw facts and figures	Processed and meaningful data
No direct meaning	Useful for decision-making
Unorganized	Organized and structured
Example: 50, 75, 80	Example: Average = 68.3

When Used in Database Processing

Data is stored in tables (rows and columns).

The database system processes this data (sorting, filtering, calculating).

The output becomes information (reports, summaries).

Database Management System (DBMS)

Meaning

A Database Management System (DBMS) is software used to store, organize, manage, and retrieve data easily.

It helps users create databases, update data, and generate information.

Short meaning:

- DBMS is software that manages databases.

Functions of DBMS

Data Storage

Stores data in tables.

Data Retrieval

Helps to search and retrieve information quickly.

Data Update

Allows adding, deleting, and modifying data.

Data Security

Protects data through passwords and access control.

Data Backup & Recovery

Restores data in case of loss.

Data Integrity

Ensures accuracy and consistency of data.

Multi-user Access

Many users can use the same database at the same time.

Examples of DBMS

MySQL

Oracle

SQL Server

PostgreSQL

MS Ac

DBMS is software used to store, organize, and manage data in a database.

Examples: MySQL, Oracle.

1. Components of DBMS

These are the main parts that help DBMS work:

a. Hardware

Physical devices like computers, servers, storage devices.

b. Software

DBMS software itself (MySQL, Oracle), OS, utilities.

c. Data

The actual facts stored in tables.

d. Procedures

Rules and steps for using and managing the database.

e. Database Users

End users

Programmers

DBA (Database Administrator)

f. Database Access Languages

SQL is the main language used to interact with the DBMS.

2. Uses of DBMS

a. Efficient data storage

Stores large amounts of data in an organized way.

b. Easy data retrieval

Fast searching and reporting.

c. Data security

Password protection and access control.

d. Avoids data redundancy

Prevents storing the same data multiple times.

e. Supports multiple users

Many people can access the database together.

f. Better decision-making

Processes raw data into useful information.

3. Limitations of DBMS

a. Costly

DBMS software and hardware are expensive.

b. Requires trained people

Needs skilled administrators and programmers.

c. Complex to manage

Large databases require high maintenance.

d. Performance issues

If many users access at the same time, speed may reduce.

e. Data loss risk

System failure can cause problems (though backup helps).

4. Types of DBMS

a. Hierarchical DBMS

Data arranged in a tree structure (parent–child).

Example: IBM Information Management System.

b. Network DBMS

Many-to-many relationships allowed.

c. Relational DBMS (RDBMS)

Data stored in tables (rows & columns).

Most common type.

Examples: MySQL, Oracle, SQL Server.

d. Object-Oriented DBMS

Stores data as objects like in OOP languages.

Example: db4o.

e. NoSQL DBMS

Used for unstructured and big data.

Examples: MongoDB, Cassandra.

UNIT III

Management Information System (MIS) – Meaning

A Management Information System (MIS) is a system that collects, stores, processes, and provides information to managers so they can make better decisions.

It uses people, technology, and procedures to give the right information at the right time.

Characteristics of MIS

Continuous flow of information – provides regular, updated reports.

Accuracy – information given is correct and reliable.

Timeliness – supplies information quickly when needed.

Relevance – provides only useful information for decision-making.

Integrated system – combines data from different departments.

Easy to use – user-friendly for managers.

Supports planning and control – helps in forecasting, budgeting, and monitoring performance.

Future-oriented – helps predict trends.

Functional Management Information Systems

Management Information Systems (MIS) can be divided into different functional areas of a business. Each area has its own MIS to support planning, control, and decision-making.

1. Financial MIS

Helps in managing the financial activities of the business.

Functions:

Helps in budgeting and financial planning

Provides cash flow, profit, and cost analysis

Supports investment decisions

Monitors financial performance

Examples: Cash management system, financial forecasting system.

2. Accounting MIS

Supports recording and reporting of financial transactions.

Functions:

Maintains accounts and ledgers

Generates financial statements (Balance Sheet, P&L)

Tracks receivables and payables

Helps in auditing and cost control

Examples: Payroll system, accounts payable/receivable system.

3. Marketing MIS

Provides information for marketing decisions.

Functions:

Helps study market trends and customer preferences

Assists in pricing, promotion, and sales planning

Tracks sales performance and competitor analysis

Supports product development decisions

Examples: Sales analysis system, market research system.

4. Production MIS

Supports production planning and control.

Functions:

Helps in scheduling and controlling production

Monitors quality control and inventory levels

Assists in capacity planning

Reduces production cost and wastage

Examples: Inventory control system, production planning system.

5. Human Resource MIS (HR MIS)

Manages employee-related information.

Functions:

Recruitment and training management

Tracks employee performance and attendance

Manages payroll and benefits

Supports workforce planning

Examples: Employee information system, performance evaluation system.

Business Process Outsourcing (BPO)

Meaning

Business Process Outsourcing (BPO) means giving certain business tasks or processes to an outside company instead of doing them within the organization.

Companies outsource to save cost, increase efficiency, and focus on core activities.

Examples

Customer care call centers

Data entry

Payroll processing

IT support

Telemarketing

Types of BPO

Back Office BPO – Internal tasks like billing, payroll, data entry.

Front Office BPO – Customer-facing tasks like customer support, sales.

Onshore BPO – Outsourcing within the same country.

Offshore BPO – Outsourcing to another country (e.g., USA → India).

Nearshore BPO – Outsourcing to a nearby country.

Advantages

Reduces cost

Improves efficiency

Focus on core business

Access to skilled workers

Better service quality

Limitations

Less control over processes

Security or privacy risks

Quality may vary

Communication issues

UNIT -IV**Networking – Meaning**

Networking is the process of connecting two or more computers or devices so they can share data, resources, and services.

Example: sharing files, internet, printers, etc.

Characteristics of Networking

Resource Sharing – devices share hardware (printers), software, data.

Communication – enables email, messaging, video calls, etc.

Data Sharing – quick transfer of files and information.

Centralized Management – data can be stored and controlled from one place.

Scalability – easy to add more computers to the network.

Reliability – backups and security features ensure smooth working.

Types of Networks

LAN (Local Area Network) – small area like a home, school, office.

MAN (Metropolitan Area Network) – covers a city or large campus.

WAN (Wide Area Network) – covers large areas; the Internet is a WAN.

Networking Devices

Modem – connects network to the internet.

Router – directs data between networks.

Switch – connects multiple devices inside a LAN.

Hub – basic device to connect computers (less smart).

Uses of Networking

Sharing data and files

Accessing shared internet

Online communication

Cloud storage

Online transactions and business

Internet – Meaning

The Internet is a worldwide network of millions of computers connected together.

It allows people to share information, communicate, and access services from anywhere in the world.

Internet Basics

These are the fundamental things you should know about the Internet:

1. WWW (World Wide Web)

A collection of websites and web pages that you can browse using a browser like Chrome.

2. Web Browser

Software used to access the internet.

Examples: Chrome, Firefox, Edge.

3. URL (Uniform Resource Locator)

The address of a webpage.

Example: google.com

4. Email

A system for sending messages electronically.

5. Search Engine

Helps you find information on the internet.

Examples: Google, Bing

6. Internet Protocols

Rules for how data travels on the internet.

Examples: HTTP, HTTPS, FTP, TCP/IP.

7. ISP (Internet Service Provider)

A company that gives internet connection.

Examples: Airtel, Jio, BSNL.

8. Wi-Fi

Wireless network that allows devices to connect to the internet without cables.

World Wide Web (WWW) – Meaning

The World Wide Web is a collection of websites and web pages stored on servers across the world.

You can access these pages using a web browser (like Chrome, Firefox, Edge).

The WWW uses the Internet to deliver information such as text, images, videos, and links.

Basic Features of WWW

Hypertext – webpages contain links (hyperlinks) to move between pages.

Multimedia – supports text, images, audio, and video.

Web Browser Access – viewed through browsers.

URL – each webpage has a unique address.

Client–Server Model – browser (client) requests pages from web servers.

Functions of WWW

Provides information

Enables online services (shopping, banking, learning)

Supports communication (social media, email via browser)

Access to global resources anytime

Internet Access – Meaning

Internet access means the ability to connect a computer or mobile device to the Internet so you can browse websites, use apps, send emails, and access online services.

Ways of Internet Access

Dial-up Connection

Uses telephone lines to connect to the internet. Very slow and outdated.

Broadband Connection

High-speed internet using telephone lines, cable, or optical fibre.

Examples: DSL, Cable, Fiber.

Wi-Fi

Wireless internet access within a limited area like home, school, office.

Mobile Data (3G/4G/5G)

Internet access through mobile networks using SIM cards.

Examples: Jio, Airtel, BSNL (in India).

Hotspot

Mobile or router shares its internet connection with other devices wirelessly.

Requirements for Internet Access

A device (computer, smartphone, tablet)

A modem/router

An Internet Service Provider (ISP)

A network connection (wired or wireless)

Internet Addressing – Meaning

Internet addressing refers to the system used to identify devices and web resources on the internet.

It ensures that data reaches the correct device or website.

Types of Internet Addressing

1. IP Address (Internet Protocol Address)

A unique number given to each device on a network.

It helps devices find and communicate with each other.

Two types:

IPv4 – Example: 192.168.1.1

IPv6 – Example: 2400:cb00:2048:1::c629

2. Domain Name

A human-friendly name for websites.

Example: google.com

It is easier to remember than IP addresses.

3. URL (Uniform Resource Locator)

The complete address of a webpage.

Example: <https://www.example.com/page>

4. DNS (Domain Name System)

Converts domain names into IP addresses.

Works like the “phonebook” of the internet.

Why Internet Addressing is Important?

Identifies devices uniquely

Ensures correct delivery of data

Helps users access websites easily

Supports communication between networks

Search Engines – Meaning

A search engine is an online tool that helps users find information on the internet.

You type keywords, and the search engine shows a list of relevant websites, images, videos, etc.

Examples of Search Engines

Google

Bing

Yahoo

DuckDuckGo

How Search Engines Work (Basics)

Crawling – Search engine robots scan web pages.

Indexing – Information from web pages is stored in a database.

Searching/Ranking – When you type a query, the engine shows the most relevant results at the top.

Uses of Search Engines

Finding information

Locating websites

Searching images/videos

Getting answers quickly

Research and study purposes

Electronic Mail (E-mail) – Meaning

Electronic mail (Email) is a method of sending and receiving messages over the internet.

You can send text, images, documents, and other files quickly to anyone with an email address.

Features of Email

Fast communication – messages reach instantly.

Low cost – usually free to use.

Attachments – allows sending files (PDFs, photos, etc.).

Easy storage – messages can be saved for later.

Accessible anywhere – from mobile, computer, or tablet.

Basic Terms

Email Address: Example → username@example.com

Inbox: Where received emails are stored

Compose: To write a new email

CC/BCC: Send copies to other people

Attachment: Files sent with the message

Uses of Email

Personal communication

Business communication

Sending documents

Online services and registration

Sharing information for study/work

UNIT -V

Industry 4.0 (Fourth Industrial Revolution)

Industry 4.0 refers to the transformation of traditional manufacturing and industries through the integration of digital and digital technologies, enabling smart, automated, and connected systems.

Evolution of Industry

Industry 1.0 – Mechanization using steam and water power

Industry 2.0 – Mass production using electricity

Industry 3.0 – Automation using computers and electronics

Industry 4.0 – Smart factories with cyber-physical systems

Key Technologies of Industry 4.0

Internet of Things (IoT) – Connected machines and devices

Artificial Intelligence (AI) – Intelligent decision-making

Big Data & Analytics – Data-driven insights

Cyber-Physical Systems (CPS) – Integration of physical and digital systems

Cloud Computing – Data storage and remote access

Robotics & Automation – Smart and autonomous robots

Additive Manufacturing (3D Printing)

Blockchain – Secure and transparent transaction

Design Principles of Industry 4.0

Design Principles of Industry 4.0 (In Detail)

The design principles of Industry 4.0 act as guidelines for building smart factories where machines, systems, and humans work in an intelligent and connected environment.

1. Interoperability

Meaning:

Interoperability is the ability of machines, devices, sensors, and humans to communicate and work together through the Internet of Things (IoT).

Explanation:

Machines exchange data with other machines (M2M)

Systems share information in real time

Standard communication protocols are used

Example:

A robotic arm communicates with a conveyor belt and quality-check system to adjust operations automatically.

2. Information Transparency

Meaning:

Information transparency means creating a virtual copy of the physical world using data collected from sensors.

Explanation:

Sensors collect real-time data

Data is analyzed and visualized

Managers can monitor processes clearly

Benefits:

Better decision-making

Early fault detection

Example:

Dashboards showing machine performance, temperature, and production status.

3. Technical Assistance

Meaning:

Technical assistance refers to computer systems supporting humans in decision-making and problem-solving.

Two types of assistance:

Information Support – Systems provide relevant information

Physical Support – Robots assist humans in dangerous or repetitive tasks

Example:

AI systems suggesting maintenance actions or robots handling heavy materials.

4. Decentralized Decision-Making

Meaning:

System can make decisions independently without human intervention.

Explanation:

Machines analyze data locally

Actions are taken automatically

Human involvement only during exceptions

Example:

A machine automatically stops production when a defect is detected.

5. Real-Time Capability

Meaning:

The ability to collect, analyze, and act on data instantly.

Explanation:

Continuous data flow from machines

Immediate response to changes

Example:

Instant alerts when machine temperature exceeds limits.

6. Service Orientation

Meaning:

Industry 4.0 systems provide services through the internet for users and other systems.

Explanation:

Software and hardware offered as services

Easy integration of new services

Example:

Cloud-based production monitoring services.

7. Modularity

Meaning:

Production systems can be easily adapted and expanded according to changing requirements.

Explanation:

Flexible system design

New modules can be added without disrupting operations

Example:

Adding a new production unit to meet increased demand.

Summary Table (Exam-Oriented)

Principle Key Idea

Interoperability Communication between systems

Information Transparency Real-time data visibility

Technical Assistance Human support systems

Decentralized Decisions Autonomous operations

Real-Time Capability Instant data processing

Service Orientation Internet-based services

Modularity Flexible system design

Goals of Industry 4.0

Increase productivity and efficiency

Enable mass customization

Improve quality and flexibility

Reduce costs and downtime

Support smart decision-making

Application

Smart factories

Supply chain management

Healthcare systems

Smart cities

Energy management

Big Data Analytics – Meaning

Big Data Analytics is the process of examining large, complex, and fast-growing data sets to discover hidden patterns, trends, and useful information that help in better decision-making.

Key features of Big Data (5 V's):

Volume – Huge amount of data

Velocity – Speed at which data is generated

Variety – Different types (text, images, videos, sensor data)

Veracity – Accuracy and reliability of data

Value – Useful insights obtained from data

Example:

Analyzing customer purchase data to predict future buying behavior.

Artificial Intelligence (AI)

Artificial Intelligence (AI) is a branch of computer science that focuses on creating machines and systems capable of performing tasks that normally require human intelligence, such as learning, reasoning, problem-solving, and decision-making.

Key Features of Artificial Intelligence

Learning – Systems learn from data (Machine Learning)

Reasoning – Ability to analyze situations and make decisions

Perception – Recognizing speech, images, and patterns

Adaptability – Improving performance over time

Types of Artificial Intelligence

Narrow AI (Weak AI)

Designed for specific tasks Example: Voice assistants, recommendation systems

General AI (Strong AI)

Performs any intellectual task like humans

Still under development

Super AI

Exceeds human intelligence

Theoretical concept

Applications of AI

Healthcare (disease diagnosis)

Manufacturing (predictive maintenance)

Banking and finance (fraud detection)

Transportation (self-driving vehicles)

Education (smart tutoring systems)

Role of AI in Industry 4.0

Smart automation

Predictive maintenance

Quality inspection

Intelligent decision-making

Advantages of AI

High efficiency and accuracy

Reduces human error

Operates continuously

Limitations of AI

High development cost

Lack of human creativity

Dependence on data quality

Limitations of AI

High development cost

Lack of human creativity

Dependence on data quality

Why Big Data Analytics?

To analyze huge volumes of data quickly

To identify patterns and trends hidden in data

To support better and faster decision-making

To improve business performance and efficiency

Example:

Analyzing customer data to predict demand and improve services.

Why Artificial Intelligence?

To enable machines to think and act intelligently

To automate complex tasks

To reduce human errors

To provide predictive and adaptive solutions

Example:

AI systems predicting machine failure before it happens.

Why Use Big Data Analytics and AI Together?

Big Data provides raw information

AI converts data into intelligent actions

Together they enable smart systems in Industry

History of the Internet of Things (IoT)

The Internet of Things (IoT) refers to the concept of connecting physical objects to the internet so they can collect, share, and act on data.

Historical Development of IoT

1. Early Concept (1980s–1990s)

The idea of connected devices began with embedded systems.

In 1982, a modified Coca-Cola vending machine at Carnegie Mellon University was connected to the internet to report inventory status.

2. Term “Internet of Things” Coined (1999)

The term “Internet of Things” was coined by Kevin Ashton.

He used it while working on RFID (Radio Frequency Identification) technology at MIT.

The idea was to connect everyday objects using RFID and sensors.

3. Growth with Internet and Sensors (2000–2010)

Rapid growth of the internet, wireless communication, and low-cost sensors.

Devices like smart meters and GPS-enabled systems became common.

4. Expansion with Smartphones & Cloud (2010–2015)

Smartphones increased internet access.

Cloud computing enabled large-scale data storage and processing.

IoT applications expanded to homes, healthcare, and industries.

5. IoT in Industry 4.0 (2015–Present)

IoT became a key pillar of Industry 4.0.

Integrated with Big Data Analytics, AI, and Cyber-Physical Systems.

Used in smart factories, smart cities, smart agriculture, etc.

Timeline Summary

Year	Development
1982	First connected device (vending machine)
1999	Term “Internet of Things” introduced
2000–2010	Growth of sensors and connectivity
2010–2015	Cloud and mobile-driven expansion
2015–Now	IoT as core of Industry 4.0

Timeline Summary of Artificial Intelligence (AI)

Year / Period Milestone in AI Development

1950	Alan Turing proposed the Turing Test to measure machine intelligence
1956	Term “Artificial Intelligence” coined by John McCarthy at the Dartmouth Conference
1960s–1970s	Early AI programs (problem solving, game playing) developed
1980s	Expert Systems introduced in industries
1997	IBM’s Deep Blue defeated world chess champion Garry Kasparov
2000s	Growth of Machine Learning and data-driven AI
2012	Breakthrough in Deep Learning (image recognition success)
2015–Present	AI integrated with Big Data, IoT, and Industry 4.0 applications.

Cyber Security

Cyber Security refers to the practice of protecting computers, networks, systems, and data from unauthorized access, attacks, damage, or theft.

Objectives of Cyber Security

Protect data confidentiality

Ensure data integrity

Maintain system availability

Prevent cyber attacks

Types of Cyber Security

Network security

Application security

Information (data) security

Cloud security

IoT security

Cyber Crime

Cyber Crime is any illegal activity carried out using computers, networks, or the internet.

Examples

Hacking

Online fraud

Identity theft

Cyber stalking

Classification of Cyber Crime

1. Crimes Against Individuals

These crimes target personal data or privacy.

Identity theft

Email spoofing

Cyber stalking

Online harassment

2. Crimes Against Property

These crimes damage or steal digital property or data.

Data theft

Intellectual property theft

Malware attacks

Ransomware

3. Crimes Against Organizations

These crimes target companies and institutions.

Hacking corporate networks

Denial of Service (DoS/DDoS) attacks

Corporate data breaches

4. Crimes Against Government

These crimes threaten national security.

Cyber terrorism

Website defacement

Espionage attacks

5. Crimes Against Society

These crimes affect public order and morality

Online gambling

Distribution of illegal content

Fake news and misinformation

Relationship Between Cyber Security and Cyber Crime

Cyber crime creates threats

Cyber security prevents and controls threats

Material Prepared by

Dr.B.Divya Keerthika

Assistant Professor

Department of Commerce with Professional Accounting

Vidyasagar College of Arts and Science

Udumalpet

Reference Books

- Fundamentals of Information Technology- Alexis Leon and Mathews Leon
- Computers and commonsense - Roger Hunt and John Shallery
- Net sources .