UNIT -1
SYLLABUS

Introduction —System Software and machine architecture. Loader and Linkers: Basic Loader
Functions - Machine dependent loader features —Machine independent loader features - Loader
design options.

Introduction

The subject introduces the design and implementation of system software. Software is set
of instructions or programs written to carry out certain task on digital computers. It is classified
into system software and application software. System software consists of a variety of programs
that support the operation of a computer. Application software focuses on an application or
problem to be solved. System software consists of a variety of programs that support the
operation of a computer. Examples for system software are Operating system, compiler,
assembler, macro processor, loader or linker, debugger, text editor, database management
systems (some of them) and, software engineering tools. These software’s make it possible for
the user to focus on an application or other problem to be solved, without needing to know the

details of how the machine works internally.
System Software and Machine Architecture

One characteristic in which most system software differs from application software is

machine dependency.

System software — support operation and use of computer. Application software -
solution to a problem. Assembler translates mnemonic instructions into machine code. The
instruction formats, addressing modes etc., are of direct concern in assembler design. Similarly,

Compilers must generate machine language code, taking into account such hardware

characteristics as the number and type of registers and the machine instructions available.
Operating systems are directly concerned with the management of nearly all of the resources of a

computing system.

There are aspects of system software that do not directly depend upon the type of
computing system, general design and logic of an assembler, general design and logic of a
compiler and, code optimization techniques, which are independent of target machines.
Likewise, the process of linking together independently assembled subprograms does not usually

depend on the computer being used.

Assembler Design

Assembler is system software which is used to convert an assembly language program to its
equivalent object code. The input to the assembler is a source code written in assembly language
(using mnemonics) and the output is the object code. The design of an assembler depends upon

the machine architecture as the language used is mnemonic language.

Basic Assembler Functions:
The basic assembler functions are:
e Translating mnemonic language code to its equivalent object code.

e Assigning machine addresses to symbolic labels.

Source Program)
+ Mnemonic opcode - Assembher‘ - Object code
* Symbol)

.'I IH

* The design of assembler can be to perform the following:

Scanning (tokenizing)

Parsing (validating the instructions)
Creating the symbol table
Resolving the forward references

Converting into the machine language

» The design of assembler in other words:

Convert mnemonic operation codes to their machine language equivalents
Convert symbolic operands to their equivalent machine addresses

Decide the proper instruction format Convert the data constants to internal machine
representations

Write the object program and the assembly listing

So for the design of the assembler we need to concentrate on the machine architecture of the

SIC/XE machine. We need to identify the algorithms and the various data structures to be used.

According to the above required steps for assembling the assembler also has to handle assembler

directives, these do not generate the object code but directs the assembler to perform certain

operation. These directives are:

» SIC Assembler Directive:

START: Specify name & starting address.

END: End of the program, specify the first execution instruction.
BYTE, WORD, RESB, RESW

End of record: a null char(00)

End of file: a zero length record

The assembler design can be done:

Single pass assembler

Multi-pass assembler

Single-pass Assembler:

In this case the whole process of scanning, parsing, and object code conversion is done in
single pass. The only problem with this method is resolving forward reference. This is shown
with an example below:

10 1000 FIRST STL RETADR 141033

95 1033 RETADR RESW 1

In the above example in line number 10 the instruction STL will store the linkage register
with the contents of RETADR. But during the processing of this instruction the value of this
symbol is not known as it is defined at the line number 95. Since | single-pass assembler the
scanning, parsing and object code conversion happens simultaneously. The instruction is fetched;
it is scanned for tokens, parsed for syntax and semantic validity. If it valid then it has to be
converted to its equivalent object code. For this the object code is generated for the opcode STL

and the value for the symbol RETADR need to be added, which is not available.

Due to this reason usually the design is done in two passes. So a multi-pass assembler
resolves the forward references and then converts into the object code. Hence the process of the

multi-pass assembler can be as follows:

Pass-1
e Assign addresses to all the statements
e Save the addresses assigned to all labels to be used in Pass-2

e Perform some processing of assembler directives such as RESW, RESB to find the length
of data areas for assigning the address values.

e Defines the symbols in the symbol table(generate the symbol table)

Pass-2

e Assemble the instructions (translating operation codes and looking up addresses).
e Generate data values defined by BYTE, WORD etc.
e Perform the processing of the assembler directives not done during pass-1.
e Write the object program and assembler listing.
Assembler Design:

The most important things which need to be concentrated is the generation of Symbol table
and resolving forward references.

« Symbol Table:

— This is created during pass 1

— All the labels of the instructions are symbols

— Table has entry for symbol name, address value.
« Forward reference:

— Symbols that are defined in the later part of the program are called forward
referencing.

— There will not be any address value for such symbols in the symbol table in pass
1.

Example Program:
The example program considered here has a main module, two subroutines
» Purpose of example program
- Reads records from input device (code F1)
- Copies them to output device (code 05)
- At the end of the file, writes EOF on the output device, then RSUB to the
operating system
« Data transfer (RD, WD)
-A buffer is used to store record
-Buffering is necessary for different 1/O rates
-The end of each record is marked with a null character (00)16

-The end of the file is indicated by a zero-length record

e Subroutines (JSUB, RSUB)
-RDREC, WRREC

-Save link register first before nested jump

Line Loc Source statement Object code
100¢ START 1000
10 00 FIRS STL RETAD
0 LOOE RDREC
2 00¢ LDA LENGTH
25 009 COMP ZERO
(JEQ ENDFT]I
: F JSU RREC
J O0F 1003
- 1015 ENDE I LDA X 00102A
1018 0C1039
1018 00102C
101E 0C103
65 1021 482061
1024 0&
102D 0(
030 00000¢
033
1 036

The first column shows the line number for that instruction, second column shows the addresses
allocated to each instruction. The third column indicates the labels given to the statement, and is
followed by the instruction consisting of opcode and operand. The last column gives the
equivalent object code.

The object code later will be loaded into memory for execution. The simple object program
we use contains three types of records:

» Header record
-Col.1H
- Col. 2~7 Program name
- Col. 8~13 Starting address of object program (hex)
- Col. 14~19 Length of object program in bytes (hex)
 Text record
-Col. 1T
- Col. 2~7 Starting address for object code in this record (hex)
- Col. 8~9 Length of object code in this record in bytes (hex)
- Col. 10~69 Object code, represented in hex (2 col. per byte)
+ End record
-CollE

- Col.2~7 Address of first executable instruction in object program (hex) “~” is only for
separation only

Object code for the example program:

Some of the features in the program depend on the architecture of the machine. If the program is
for SIC machine, then we have only limited instruction formats and hence limited addressing
modes. We have only single operand instructions. The operand is always a memory reference.
Anything to be fetched from memory requires more time. Hence the improved version of
SIC/XE machine provides more instruction formats and hence more addressing modes. The
moment we change the machine architecture the availability of number of instruction formats
and the addressing modes changes. Therefore the design usually requires considering two things:

Machine-dependent features and Machine-independent features.

Machine-Dependent Features:
e Instruction formats and addressing modes

e Program relocation

Instruction formats and Addressing Modes

The instruction formats depend on the memory organization and the size of the memory. In

SIC machine the memory is byte addressable. Word size is 3 bytes. So the size of the memory is

212 bytes. Accordingly it supports only one instruction format. It has only two registers: register

A and Index register. Therefore the addressing modes supported by this architecture are direct,
indirect, and indexed. Whereas the memory of a SIC/XE machine is 2%° bytes (1 MB). This

supports four different types of instruction types, they are:

= 1 byte instruction

= 2 byte instruction

= 3 byte instruction

= 4 byte instruction

» Instructions can be:

Instructions involving register to register

Instructions with one operand in memory, the other in Accumulator (Single
operand instruction)

Extended instruction format

« Addressing Modes are:

Index Addressing(SIC): Opcode m, X
Indirect Addressing: Opcode @m
PC-relative: Opcode m

Base relative: Opcode m

Immediate addressing: Opcode #c

1. Translations for the Instruction involving Register-Register addressing mode:

During pass 1 the registers can be entered as part of the symbol table itself. The value for these

registers is their equivalent numeric codes. During pass 2, these values are assembled along with

the mnemonics object code. If required a separate table can be created with the register names

and their equivalent numeric values.

2. Translation involving Register-Memory instructions:

In SIC/XE machine there are four instruction formats and five addressing modes. For formats
and addressing modes refer chapter 1.

Among the instruction formats, format -3 and format-4 instructions are Register-Memory
type of instruction. One of the operand is always in a register and the other operand is in the
memory. The addressing mode tells us the way in which the operand from the memory is to be
fetched.

There are two ways: Program-counter relative and Base-relative. This addressing mode can
be represented by either using format-3 type or format-4 type of instruction format. In format-3,
the instruction has the opcode followed by a 12-bit displacement value in the address field.
Where as in format-4 the instruction contains the mnemonic code followed by a 20-bit
displacement value in the address field.

2. Program-Counter Relative: In this usually format-3 instruction format is used. The instruction
contains the opcode followed by a 12-bit displacement value. The range of displacement values
are from 0 -2048. This displacement (should be small enough to fit in a 12-bit field) value is
added to the current contents of the program counter to get the target address of the operand
required by the instruction. This is relative way of calculating the address of the operand relative
to the program counter. Hence the displacement of the operand is relative to the current program

counter value. The following example shows how the address is calculated:

3. Base-Relative Addressing Mode: in this mode the base register is used to mention the

displacement value. Therefore the target address is
TA = (base) + displacement value

This addressing mode is used when the range of displacement value is not sufficient. Hence the
operand is not relative to the instruction as in PC-relative addressing mode. Whenever this mode
is used it is indicated by using a directive BASE. The moment the assembler encounters this
directive the next instruction uses base-relative addressing mode to calculate the target address of

the operand.

When NOBASE directive is used then it indicates the base register is no more used to calculate
the target address of the operand. Assembler first chooses PC-relative, when the displacement

field is not enough it uses Base-relative.

LDB #LENGTH (instruction) BASE
LENGTH (directive)

: NOBASE
For example:
12 0003 LDB #LENGTH 69202D
13 BASE LENGTH
100 0033 LENGTH RESW 1
105 0036 BUFFER RESB 4096
160 104E STCH BUFFER, X 57C003
165 1051 TIXR T B850

In the above example the use of directive BASE indicates that Base-relative addressing mode
is to be used to calculate the target address. PC-relative is no longer used. The value of the
LENGTH is stored in the base register. If PC-relative is used then the target address calculated

is:

The LDB instruction loads the value of length in the base register which 0033. BASE
directive explicitly tells the assembler that it has the value of LENGTH.

BUFFER is at location (0036)16
(B) = (0033)16
disp = 0036 — 0033 = (0003)16

op nixbpe disp
010101 1 11 1 0 0| 003 — E57C003

20 000A LDA LENGTH 032026

175 1056 EXIT STX LENGTH 134000

Consider Line 175. If we use PC-relative

Disp = TA — (PC) = 0033 —1059 = EFDA

PC relative is no longer applicable, so we try to use BASE relative addressing mode.
4. Immediate Addressing Mode

In this mode no memory reference is involved. If immediate mode is used the target address is

the operand itself.

If the symbol is referred in the instruction as the immediate operand then it is immediate with

PC-relative mode as shown in the example below:
5. Indirect and PC-relative mode:

In this type of instruction the symbol used in the instruction is the address of the location which
contains the address of the operand. The address of this is found using PC-relative addressing

mode.

The instruction jumps the control to the address location RETADR which in turn has the address
of the operand. If address of RETADR is 0030, the target address is then 0003 as calculated

above.
3.2 Program Relocation

Sometimes it is required to load and run several programs at the same time. The system must be
able to load these programs wherever there is place in the memory. Therefore the exact starting

is not known until the load time.

Absolute Program

In this the address is mentioned during assembling itself. This is called Absolute Assembly.

Consider the instruction:
55 101B LDA THREE 00102D

This statement says that the register A is loaded with the value stored at location 102D.
Suppose it is decided to load and execute the program at location 2000 instead of location 1000.
Then at address 102D the required value which needs to be loaded in the register A is no more
available. The address also gets changed relative to the displacement of the program. Hence we
need to make some changes in the address portion of the instruction so that we can load and
execute the program at location 2000. Apart from the instruction which will undergo a change in
their operand address value as the program load address changes. There exist some parts in the

program which will remain same regardless of where the program is being loaded.

Since assembler will not know actual location where the program will get loaded, it cannot
make the necessary changes in the addresses used in the program. However, the assembler
identifies for the loader those parts of the program which need modification. An object program
that has the information necessary to perform this kind of modification is called the relocatable

program.
3.2.5 Control Sections:

A control section is a part of the program that maintains its identity after assembly; each
control section can be loaded and relocated independently of the others. Different control
sections are most often used for subroutines or other logical subdivisions. The programmer can

assemble, load, and manipulate each of these control sections separately.

Because of this, there should be some means for linking control sections together. For
example, instructions in one control section may refer to the data or instructions of other control
sections. Since control sections are independently loaded and relocated, the assembler is unable
to process these references in the usual way. Such references between different control sections

are called external references.

The assembler generates the information about each of the external references that will
allow the loader to perform the required linking. When a program is written using multiple
control sections, the beginning of each of the control section is indicated by an assembler

directive

— assembler directive: CSECT

The syntax
secname CSECT

— separate location counter for each control section

Control sections differ from program blocks in that they are handled separately by the assembler.
Symbols that are defined in one control section may not be used directly another control section;
they must be identified as external reference for the loader to handle. The external references are
indicated by two assembler directives:

EXTDEF (external Definition):

It is the statement in a control section, names symbols that are defined in this section but
may be used by other control sections. Control section names do not need to be named in the

EXTREF as they are automatically considered as external symbols.

EXTREF (external Reference):

It names symbols that are used in this section but are defined in some other control

section.

The order in which these symbols are listed is not significant. The assembler must include proper
information about the external references in the object program that will cause the loader to

insert the proper value where they are required.
Handling External Reference
Case 1
15 0003 CLOOP +JSUB RDREC 4B100000
e The operand RDREC is an external reference.
o The assembler has no idea where RDREC is
o inserts an address of zero

o canonly use to provide enough room (that is, relative addressing
for external reference is invalid)

e The assembler generates information for each external reference that will allow the loader

to perform the required linking.

Case 2
190 0028 MAXLEN WORD BUFEND-BUFFER 000000
e There are two external references in the expression, BUFEND and BUFFER.
e The assembler inserts a value of zero
e passes information to the loader
e Add to this data area the address of BUFEND
e Subtract from this data area the address of BUFFER
Case 3

On line 107, BUFEND and BUFFER are defined in the same control section and the expression
can be calculated immediately.

107 1000 MAXLEN EQU BUFEND-BUFFER
Object Code for the example program:

The assembler must also include information in the object program that will cause the loader to
insert the proper value where they are required. The assembler maintains two new record in the

object code and a changed version of modification record.

Define record (EXTDEF)

e Col1l D
e Col. 2-7 Name of external symbol defined in this control section
e Col. 8-13 Relative address within this control section (hexadecimal)

e Col.14-73 Repeat information in Col. 2-13 for other external symbols

Refer record (EXTREF)

e Col1l R
e Col. 2-7 Name of external symbol referred to in this control section
e Col. 8-73 Name of other external reference symbols

Modification record
e Col.1 M

e Col 2-7 Starting address of the field to be modified (hexadecimal)

e Col. 8-9 Length of the field to be modified, in half-bytes (hexadecimal)

e Col11-16 External symbol whose value is to be added to or subtracted from
the indicated field

A define record gives information about the external symbols that are defined in this control
section, i.e., symbols named by EXTDEF.

A refer record lists the symbols that are used as external references by the control section, i.e.,
symbols named by EXTREF.

The new items in the modification record specify the modification to be performed: adding or
subtracting the value of some external symbol. The symbol used for modification my be defined

either in this control section or in another section.

The object program is shown below. There is a separate object program for each of the
control sections. In the Define Record and refer record the symbols named in EXTDEF and
EXTREF are included.

In the case of Define, the record also indicates the relative address of each external

symbol within the control section.

For EXTREF symbols, no address information is available. These symbols are simply
named in the Refer record.

Handling Expressions in Multiple Control Sections:

The existence of multiple control sections that can be relocated independently of one
another makes the handling of expressions complicated. It is required that in an expression that
all the relative terms be paired (for absolute expression), or that all except one be paired (for

relative expressions).

When it comes in a program having multiple control sections then we have an extended

restriction that:

e Both terms in each pair of an expression must be within the same control section

o Iftwo terms represent relative locations within the same control section , their
difference is an absolute value (regardless of where the control section is located.

e Legal: BUFEND-BUFFER (both are in the same control section)

o Ifthe terms are located in different control sections, their difference has a value
that is unpredictable.

e lllegal: RDREC-COPY (both are of different control section) it is the
difference in the load addresses of the two control sections. This value
depends on the way run-time storage is allocated; it is unlikely to be of

any use.

e How to enforce this restriction

o When an expression involves external references, the assembler cannot determine
whether or not the expression is legal.

o The assembler evaluates all of the terms it can, combines these to form an initial
expression value, and generates Modification records.

o The loader checks the expression for errors and finishes the evaluation.
ASSEMBLER DESIGN
Here we are discussing

o The structure and logic of one-pass assembler. These assemblers are used when it is
necessary or desirable to avoid a second pass over the source program.

o Notion of a multi-pass assembler, an extension of two-pass assembler that allows an
assembler to handle forward references during symbol definition.

One-Pass Assembler

The main problem in designing the assembler using single pass was to resolve forward

references. We can avoid to some extent the forward references by:

e Eliminating forward reference to data items, by defining all the storage reservation

statements at the beginning of the program rather at the end.

e Unfortunately, forward reference to labels on the instructions cannot be avoided.

(forward jumping)
e To provide some provision for handling forward references by prohibiting forward
references to data items.
There are two types of one-pass assemblers:

e One that produces object code directly in memory for immediate execution (Load-and-go
assemblers).

e The other type produces the usual kind of object code for later execution.
Load-and-Go Assembler
e Load-and-go assembler generates their object code in memory for immediate execution.
e No object program is written out, no loader is needed.
e Itis useful in a system with frequent program development and testing
o The efficiency of the assembly process is an important consideration.

e Programs are re-assembled nearly every time they are run; efficiency of the assembly
process is an important consideration.
Forward Reference in One-Pass Assemblers: In load-and-Go assemblers when a forward

reference is encountered :
e Omits the operand address if the symbol has not yet been defined
e Enters this undefined symbol into SYMTAB and indicates that it is undefined

e Adds the address of this operand address to a list of forward references associated with
the SYMTAB entry

e When the definition for the symbol is encountered, scans the reference list and inserts the

address.

e At the end of the program, reports the error if there are still SYMTAB entries indicated
undefined symbols.

e For Load-and-Go assembler

o Search SYMTAB for the symbol named in the END statement and jumps to this
location to begin execution if there is no error

After Scanning line 40 of the program:
40 2021 J CLOOP 302012

The status is that upto this point the symbol RREC is referred once at location 2013, ENDFIL at
201F and WRREC at location 201C. None of these symbols are defined. The figure shows that
how the pending definitions along with their addresses are included in the symbol table.

Memory

address Contents Symbol .Value
1000 454F4600 00030000 O0OXXXXXX XXXXXXXX LENGTH | 100C
1010 XXXXAXXXX AXXXXXKX KXXXXXXX XXXXXXXX RDREC | * [.__’[2013 0]
5 THREE 1003
2000 XXXXXX XXXKXXXX XXXXXXXX XXXxxx14 ZERO 1006
2010 100948— -400100C 28100630 E{m&h = o o) NP [P
2020 [F93cz012
i EOF 1000
» ENDFIL * | » ${201C | 0

RETADR | 1009

BUFFER |100F

CLOOP |2012

FIRST 200F

The status after scanning line 160, which has encountered the definition of RDREC and
ENDFIL is as given below:

If One-Pass needs to generate object code:

e |f the operand contains an undefined symbol, use 0 as the address and write the Text
record to the object program.

e Forward references are entered into lists as in the load-and-go assembler.

e When the definition of a symbol is encountered, the assembler generates another Text
record with the correct operand address of each entry in the reference list.

e When loaded, the incorrect address O will be updated by the latter Text record containing
the symbol definition.

Multi_Pass Assembler:

e For atwo pass assembler, forward references in symbol definition are not allowed:

ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

o Symbol definition must be completed in pass 1.
e Prohibiting forward references in symbol definition is not a serious inconvenience.
o Forward references tend to create difficulty for a person reading the program.
Implementation Issues for Modified Two-Pass Assembler:

Implementation Isuues when forward referencing is encountered in Symbol Defining statements

e For a forward reference in symbol definition, we store in the SYMTAB:
o The symbol name
o The defining expression
o The number of undefined symbols in the defining expression

e The undefined symbol (marked with a flag *) associated with a list of symbols depend on

this undefined symbol.

Loaders and Linkers
This Chapter gives you...
e Basic Loader Functions
e Machine-Dependent Loader Features
e Machine-Independent Loader Features
e Loader Design Options

e Implementation Examples

Introduction

The Source Program written in assembly language or high level language will be

converted to object program, which is in the machine language form for execution. This

conversion either from assembler or from compiler, contains translated instructions and data
values from the source program, or specifies addresses in primary memory where these items are

to be loaded for execution.
This contains the following three processes, and they are,

Loading - which allocates memory location and brings the object program into memory

for execution - (Loader)

Linking- which combines two or more separate object programs and supplies the
information needed to allow references between them - (Linker)

Relocation - which modifies the object program so that it can be loaded at an address

different from the location originally specified - (Linking Loader)
Basic Loader Functions

A loader is a system program that performs the loading function. It brings object program
into memory and starts its execution. The role of loader is as shown in the figure 3.1. In figure
3.1 translator may be assembler/complier, which generates the object program and later loaded to
the memory by the loader for execution. In figure 3.2 the translator is specifically an assembler,
which generates the object loaded, which becomes input to the loader. The figure 3.3 shows the

role of both loader and linker.
Type of Loaders

The different types of loaders are, absolute loader, bootstrap loader, relocating loader
(relative loader), and, direct linking loader. The following sections discuss the functions and

design of all these types of loaders.

Absolute Loader

The operation of absolute loader is very simple. The object code is loaded to specified
locations in the memory. At the end the loader jumps to the specified address to begin execution
of the loaded program. The role of absolute loader is as shown in the figure 3.3.1. The advantage
of absolute loader is simple and efficient. But the disadvantages are, the need for programmer to

specify the actual address, and, difficult to use subroutine libraries.

o 1000
Object Absolute >
Program Loader Object
program
ready for
execution
2000
Memory

Figure 3.3.1: The Role of Absolute Loader

The algorithm for this type of loader is given here. The object program and, the object
program loaded into memory by the absolute loader are also shown. Each byte of assembled
code is given using its hexadecimal representation in character form. Easy to read by human
beings. Each byte of object code is stored as a single byte. Most machine store object programs
in a binary form, and we must be sure that our file and device conventions do not cause some of

the program bytes to be interpreted as control characters.

Begin
read Header record
verify program name and length

read first Text record

while record type is <> ‘E’ do
begin
{if object code is in character form, convert into internal representation}
move object code to specified location in memory
read next object program record
end
jump to address specified in End record
end

A Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute loader, called
bootstrap loader is executed. This bootstrap loads the first program to be run by the computer --
usually an operating system. The bootstrap itself begins at address 0. It loads the OS starting
address 0x80. No header record or control information, the object code is consecutive bytes of

memory.
The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded

Loop
A«GETC (and convert it from the ASCII character
code to the value of the hexadecimal digit)
save the value in the high-order 4 bits of S
A«GETC
combine the value to form one byte A« (A+S)
store the value (in A) to the address in register X
XeX+1

End

It uses a subroutine GETC, which is

GETC A<«—read one character
if A=0x04 then jump to 0x80
if A<48 then GETC
A « A-48 (0x30)
if A<10 then return
A« A-7
return

Machine-Dependent Loader Features

Absolute loader is simple and efficient, but the scheme has potential disadvantages One
of the most disadvantage is the programmer has to specify the actual starting address, from
where the program to be loaded. This does not create difficulty, if one program to run, but not for

several programs. Further it is difficult to use subroutine libraries efficiently.

This needs the design and implementation of a more complex loader. The loader must

provide program relocation and linking, as well as simple loading functions.
Relocation

The concept of program relocation is, the execution of the object program using any part
of the available and sufficient memory. The object program is loaded into memory wherever
there is room for it. The actual starting address of the object program is not known until load
time. Relocation provides the efficient sharing of the machine with larger memory and when
several independent programs are to be run together. It also supports the use of subroutine
libraries efficiently. Loaders that allow for program relocation are called relocating loaders or

relative loaders.

Methods for specifying relocation

Use of modification record and, use of relocation bit, are the methods available for
specifying relocation. In the case of modification record, a modification record M is used in the

object program to specify any relocation. In the case of use of relocation bit, each instruction is

associated with one relocation bit and, these relocation bits in a Text record is gathered into bit

masks.

Modification records are used in complex machines and is also called Relocation and
Linkage Directory (RLD) specification. The format of the modification record (M) is as follows.
The object program with relocation by Modification records is also shown here.

Modification record

coll: M

col 2-7: relocation address

col 8-9: length (halfbyte)

col 10: flag (+/-)

col 11-17: segment name
HACOPY 4000000 001077
TA000000 A1DA17202DA69202D481010364...44B105DA3F2FECA032010
TA00001DA1310F20164010003A0F200DA4B10105DA3E20032454F46
TA001035 A1DAB410AB400AB440A751010004...4332008A57C003AB850
TA00105341DA3B2FEAA13400044F0000AF14..A53C003ADF2008AB850
TA00070407A3B2FEFA4F0000A05
Ma000007A05+COPY
Ma000014A05+COPY
Ma000027A05+COPY
EA000000

The relocation bit method is used for simple machines. Relocation bit is 0: no
modification is necessary, and is 1. modification is needed. This is specified in the columns 10-

12 of text record (T), the format of text record, along with relocation bits is as follows.

Text record

col1: T

col 2-7: starting address
col 8-9: length (byte)
col 10-12: relocation bits

col 13-72: object code

Twelve-bit mask is used in each Text record (col:10-12 — relocation bits), since each text
record contains less than 12 words, unused words are set to 0, and, any value that is to be
modified during relocation must coincide with one of these 3-byte segments. For absolute loader,
there are no relocation bits column 10-69 contains object code. The object program with
relocation by bit mask is as shown below. Observe FFC - means all ten words are to be modified

and, EOO - means first three records are to be modified.

HACOPY 2000000 00107A
TA000000A1EAFFCA14003344810394000036428003043000154...43C0003 A ...
TAO0001EA15AE00A0C003644810611080033214C00004...A00000321000000
TA001039A1EAFFCA0400304000030a4...430103FAD8105DA280030a...
TA001057A0AA800410003644C0000AF14001000
TA0010614194AFE0A040030AE01079a4...4508039ADC107942C0036A4...

EA000000

Program Linking

The Goal of program linking is to resolve the problems with external references
(EXTREF) and external definitions (EXTDEF) from different control sections.

EXTDEF (external definition) - The EXTDEF statement in a control section names
symbols, called external symbols, that are defined in this (present) control section and may be

used by other sections.

ex: EXTDEF BUFFER, BUFFEND, LENGTH
EXTDEF LISTA, ENDA

EXTREF (external reference) - The EXTREF statement names symbols used in this
(present) control section and are defined elsewhere.

ex: EXTREF RDREC, WRREC
EXTREF LISTB, ENDB, LISTC, ENDC
How to implement EXTDEF and EXTREF

The assembler must include information in the object program that will cause the loader
to insert proper values where they are required — in the form of Define record (D) and, Refer
record(R).

Define record

The format of the Define record (D) along with examples is as shown here.

Col. 1 D

Col. 2-7 Name of external symbol defined in this control section
Col. 8-13 Relative address within this control section (hexadecimal)
Col.14-73 Repeat information in Col. 2-13 for other external symbols

Example records
D LISTA 000040 ENDA 000054
D LISTB 000060 ENDB 000070
Refer record
The format of the Refer record (R) along with examples is as shown here.
Col. 1 R

Col. 2-7 Name of external symbol referred to in this control section

Col. 8-73 Name of other external reference symbols
Example records

R LISTB ENDB LISTC ENDC

R LISTA ENDA LISTC ENDC

R LISTA ENDA LISTB ENDB

Here are the three programs named as PROGA, PROGB and PROGC, which are
separately assembled and each of which consists of a single control section. LISTA, ENDA in
PROGA, LISTB, ENDB in PROGB and LISTC, ENDC in PROGC are external definitions in
each of the control sections. Similarly LISTB, ENDB, LISTC, ENDC in PROGA, LISTA,
ENDA, LISTC, ENDC in PROGB, and LISTA, ENDA, LISTB, ENDB in PROGC, are external
references. These sample programs given here are used to illustrate linking and relocation. The
following figures give the sample programs and their corresponding object programs. Observe
the object programs, which contain D and R records along with other records.

0000 PROGA START 0
EXTDEF LISTA, ENDA
EXTREF LISTB, ENDB, LISTC, ENDC

0020 REF1 LDA LISTA 03201D
0023 REF2 +LDT LISTB+4 77100004
0027 REF3 LDX #ENDA-LISTA 050014
0040 LISTA EQU *
0054 ENDA EQU *
0054 REF4 WORD ENDA-LISTA+LISTC 000014

0057 REF5 WORD ENDC-LISTC-10 FFFFF6

005A
005D
0060

0000

0036
003A
003D

0060
0070
0070
0073
0076
0079
007C

0000

REF6
REF7
REF8

PROGB

REF1
REF2
REF3

LISTB
ENDB
REF4
REF5
REF6
REF7
REF8

PROGC

WORD

WORD

WORD
END

START
EXTDEF
EXTREF

EQU
EQU
WORD
WORD
WORD
WORD
WORD
END
START
EXTDEF
EXTREF

ENDC-LISTC+LISTA-1

00003F

ENDA-LISTA-(ENDB-LISTB) 000014

LISTB-LISTA FFFFCO

REF1

0
LISTB, ENDB
LISTA, ENDA, LISTC, ENDC

LISTA
LISTB+4
#ENDA-LISTA

ENDA-LISTA+LISTC
ENDC-LISTC-10
ENDC-LISTC+LISTA-1
ENDA-LISTA-(ENDB-LISTB)
LISTB-LISTA

0
LISTC, ENDC
LISTA, ENDA, LISTB, ENDB

03100000
772027
05100000

000000
FFFFF6
FFFFFF
FFFFFO
000060

0018 REF1
001C REF2
0020 REF3

0030 LISTC

0042 ENDC
0042 REF4
0045 REF5
0045 REF6
004B REF7
004E REF8

EQU

EQU

WORD
WORD
WORD
WORD
WORD

H PROGA 000000 000063

D LISTA 000040 ENDA 000054
RLISTB ENDB LISTC ENDC

LISTA
LISTB+4
#ENDA-LISTA

ENDA-LISTA+LISTC
ENDC-LISTC-10
ENDC-LISTC+LISTA-1
ENDA-LISTA-(ENDB-LISTB)
LISTB-LISTA

T 000020 OA 03201D 77100004 050014

T 000054 OF 000014 FFFF6 00003F 000014 FFFFCO

MO000024 05+LISTB
MO000054 06+LISTC
MO000057 06+ENDC
MO000057 06 -LISTC
MOOO05A06+ENDC

03100000
77100004
05100000

000030
000008
000011
000000
000000 END

MOOO05A06 -LISTC
MO0OO0005A06+PROGA
MO00005D06-ENDB
MO00005D06+LISTB
MO00006006+LISTB
MO00006006-PROGA
E000020

H PROGB 000000 00007F
D LISTB 000060 ENDB 000070
RLISTA ENDA LISTC ENDC

T 000036 0B 03100000 772027 05100000

T 000007 OF 000000 FFFFF6 FFFFFF FFFFFO 000060
MO000037 05+LISTA
MOOOO3E 06+ENDA
MOOOO3E 06 -LISTA
MO000070 06 +ENDA
MO000070 06 -LISTA
MO000070 06 +LISTC
MO000073 06 +ENDC
MO000073 06 -LISTC
MO000073 06 +ENDC
MO000076 06 -LISTC
MO000076 06+LISTA
MO000079 06+ENDA

MO000079 06 -LISTA
MO00007C 06+PROGB
MO00007C 06-LISTA
E

H PROGC 000000 000051
D LISTC 000030 ENDC 000042
RLISTA ENDA LISTB ENDB

T 000018 OC 03100000 77100004 05100000

T 000042 OF 000030 000008 000011 000000 000000
MO000019 05+LISTA
MO00001D 06+LISTB
MO000021 06+ENDA
MO000021 06 -LISTA
MO000042 06+ENDA
MO000042 06 -LISTA
MO000042 06+PROGC
MO000048 06+LISTA
MO00004B 06+ENDA
MO00004B 006-LISTA
MO00004B 06-ENDB
MO00004B 06+LISTB
MOOOO4E 06+LISTB
MOOOO4E 06-LISTA
E

The following figure shows these three programs as they might appear in memory after
loading and linking. PROGA has been loaded starting at address 4000, with PROGB and
PROGC immediately following.

For example, the value for REF4 in PROGA is located at address 4054 (the beginning address of
PROGA plus 0054, the relative address of REF4 within PROGA). The following figure shows

the details of how this value is computed.
The initial value from the Text record

T0000540F000014FFFFF600003F000014FFFFCO is 000014. To this is added the
address assigned to LISTC, which is 4112 (the beginning address of PROGC plus 30). The result
is 004126.

That is REF4 in PROGA is ENDA-LISTA+LISTC=4054-4040+4112=4126.

Similarly the load address for symbols LISTA: PROGA+0040=4040, LISTB:
PROGB+0060=40C3 and LISTC: PROGC+0030=4112

Keeping these details work through the details of other references and values of these

references are the same in each of the three programs.
Algorithm and Data structures for a Linking Loader

The algorithm for a linking loader is considerably more complicated than the absolute
loader program, which is already given. The concept given in the program linking section is used
for developing the algorithm for linking loader. The modification records are used for relocation

so that the linking and relocation functions are performed using the same mechanism.

Linking Loader uses two-passes logic. ESTAB (external symbol table) is the main data

structure for a linking loader.

Pass 1: Assign addresses to all external symbols

Pass 2: Perform the actual loading, relocation, and linking

ESTAB - ESTAB for the example (refer three programs PROGA PROGB and PROGC)
given is as shown below. The ESTAB has four entries in it; they are name of the control section,

the symbol appearing in the control section, its address and length of the control section.

Control section Symbol Address Length

PROGA 4000 63
LISTA 4040
ENDA 4054

PROGB 4063 7F
LISTB 40C3
ENDB 40D3

PROGC | 40E2 51
LISTC 4112
ENDC 4124

Program Logic for Pass 1

Pass 1 assign addresses to all external symbols. The variables & Data structures used
during pass 1 are, PROGADDR (program load address) from OS, CSADDR (control section
address), CSLTH (control section length) and ESTAB. The pass 1 processes the Define Record.

The algorithm for Pass 1 of Linking Loader is given below.

Pasgs 1

hagin
get PROCADDR from opecaling systsm
gt USADDR 10 PROGADDR {for first cnotrol sesting)
while not end of 1nput do
bagin
read next input record {Header record for unutral wection)
set 0917H 1o control section langlh
search FSTAR for control secticn name
1f fpuod then
aet grrar flag !duolicata sxternonl uynboli
alzge
anter conleol zection name wto ESTAB with value C(EALUR
while record dype (} 'E" do
bagin
read nexl ikput record
i1 record ype = 07 then
for cact symbo) in Lhe record do
hegdin
gesron KETAR for symbol name
i1 found them
sel corar flag {duplicate axtereal symdel]
else
enter symbol inte KSYAR «1th value
(L3ALDR | indicated address:
end {‘or}
end {wiile (} 'E'}
add CSLTH fo CSADDR {starting eddrewy fer next nontrol sectlont
ad {whilc not EOF|
end %255 1)

Program Logic for Pass 2

Pass 2 of linking loader perform the actual loading, relocation, and linking. It uses
modification record and lookup the symbol in ESTAB to obtain its addres. Finally it uses end

record of a main program to obtain transfer address, which is a starting address needed for the

execution of the program. The pass 2 process Text record and Modification record of the object
programs. The algorithm for Pass 2 of Linking Loader is given below.

Pass 2:

begin

seb CSADDR to PROGADDR

se+ EXECADDR to FROGALLR

while not ¢nd of wnput A0
begin

road next input record {Herder recocd!
sel CSLTH 1o consrol scction length
while rccord type ¢ 'E’ ap

begin
read rext input record
if record type — T them

begin

{if okject code is 1n charasler form, voavert
inte inicsnal reprosentation}
mova zbject ande from record to Tacilicn

(C34DDR + specified address)
end {1f 'T""

elss if record type - 'M° them
begin

sgarch ESTAB tor rmcdilying symhol Game
it found then ‘
add or snbtract symbol waluae ol lecation
- iCSADNR + spenilied address)
alge ;
set errer lag [undeficed sxternal symboll
end if ‘M'}
ena {while () 'E'} '
1f an address is spacitied [in Ead record} than'
o7 EXECADCR to (CSADDR | spacificd address)
add CSI.TH to CSARDH
end {ahils nnt ECF}

inmp to loeation_giver by EXECANNR {to stqﬁ}_execgt&QﬂﬂQi‘lgﬂﬂggxgzggJqg

SYSTEM SOFTWARE AND OPERATING SYSTEMS
UNIT-2

UNIT II: Machine dependent compiler features - Intermediate form of the program - Machine
dependent code optimization - Machine independent compiler features - Compiler designoptions
- Division into passes — Interpreters — p-code compilers - Compiler-compilers.

MACHINE DEPENDANT COMPILER FEATURES:

Synopsis

1. Introduction
. Definition of compiler
3. Basic compiler function
e Grammars
e Lexical analysis
e Syntactical analysis
e Code generation
4. Basis step to be followed in the compilation process
5. Machine dependent compiler features
e Intermediate form of the program
e Machine dependent code optimization
Intermediate form of the program
Quartruples
Form of Quartruples
Machine dependent code optimization
. Basic block
. Rearrangement of the Quartruples for code optimizationand
figure

i Sl S

—_ O

Introduction:
> In this chapter we discuss the design and operations and compiler for high level
programming language.
> Here also we presents the basic functions of simple one pas compiler which illustrate the
operations of the compile.
» Here we also discuss above machine dependent extension which is mainly used for,
i. Code generation
ii. Interpreters
iii. P-code
iv. ~ Compiler-compiler

Definition for compiler:

> Itisa language program that translates program written in high level language to machine
level language.

» For example,c, c++ compilers, Pascal

High level Compiler Low level
language program language program

Basic compiler function:
» Here we introduction the fundamental operation that are necessary in compile in the typical
high level program.
» The basis compiler function
i. Grammar
ii. Lexical analysis
iii. Syntactical analysis
iv. Code generation
Grammar:
> It specify the form or syntax legal statements the language.
» A grammar for a programming language is a format description of a syntax or formof
program an integer statement and written in the language.
» It does not describe the symaticsof meaning of various statement.

Lexical analysis:

> Itisa process of scanning the source statement, recognizing and classifying the various
tokens is called the lexical analysis.

> Itisa part of compiler that performs analytic function is known as scanner.

Syntactical analysis (or) parsing:
» After the tokens scan process each statement in the process must be recognized some
language construct some as,
» Declaration
< Assignment statement
o Which is described by grammar
» This process is called syntactic analysis (or) parsing
» Itisperformed by a part of the compiler which is known as parser.

Code generation:

> Itisthe process of generating the object code.

> Itisthe code generation technique that creates the object code per each part of the program
once syntax has to be recognized.

Basis steps to be followed in the compilation process:

Lexical Analysis

A A

Syntactical Analysis

;

Intermediate form generation
Optimization
v

Code generation

Machine dependent compiler features:
» The purpose of compiler is to translate the programs written in high level program into
machine level language.
» Most of the high levels programming languages are designed to the relatively independentof
the machine.
» It means the process of analyzing the syntax of program written in this language should be
relatively machine independent.
» Itis mainly consists of 2 steps,
% Intermediate form of the program
% Machine dependent code optimization

Intermediate form of the program:
> In the process of analyzing the syntax and semantics of source program or statement
» Here the translation process (into machine codes) is not yet been performed.
» There are many possible ways of representing in an intermediate form of,
% Code analysis
% Optimization
Quadruples:
> Itisthe process of rearrange to eliminate redundant load and store or operation.
> Intermediate form of the program represents the executable instruction of the programwith
sequence of Quartruples.

Form of Quadruples:

Operation, opl, op2, result

> In the above form operation: Is some function to be performed by object code.
» Opland op2: are the operand for this operation
> Result: where the result value to be placed.

OEerand

Sum: = Sum+ value

For Example: 1

L(5perator
Example: 2
Variance: = sum SQ div 100 — mean * mean

Machine dependent code optimization:
» Here we describe several different possibilities performing the machine dependent code
optimization.
» Code optimization is a process of optimizing the code which is used for translating the high
level language.
» On many computers there are many numbers of general purpose registers.
> It may be used,
i. Hold constants
ii. Values of variables
iii. Intermediate result etc....
» Some registers can be often used for addressing
» Machine instruction used registers as operands are usually faster than the corresponding
instruction that refer to locations in memory.
» Eachtime a value is fetch from the memory or calculated as intermediate result and it can be
assign to some registers
» The value will be available for later use without requiring a memory reference.
» This approach also avoids unnecessary movements of value between memory and registers
which takes time but doesn’t advance in computation.
> Here we using the divider concepts or basic block concepts to deal the problem.

Basic blocks:
» Itisasequence Quartruples with one entry point, which is at the beginning of the block. One
exist point, which is at the ending of the block and no jumps within the blocks.

Rearrangement of Quadruples for code optimization:
> Itisthe possibility for code optimization before machine code is generated.
> It takes the advantage of specific characteristics of and instructions of the target machines.

> For example: that may be special loop control instruction or addressing modes that can be
used to creak more efficient object mode.

» On some computer there are high level machine instructions that can performcompleted
function such as calling procedure and manipulated operating data structure in a single
operation.

Figure: rearrangement for Quadruples for code optimization

a)
DIV SUMSQ #100 i1
* MEAN MEAN i2
- il i2 13
= i3 VARIANCE
LDA SUMSQ
DIV #100
STA T1
LDA MEAN
MUL MEAN
STA T2
LDA T1
SUB T2
STA VARIANCE
b)
* MEAN MEAN i2
DIV SUMSQ #100 i1
- il i2 i3
= i3 VARIENCE

v

LDA MEAN

MUL MEAN
STA T1

LDA SUMSQ
DIV # 100
SUB T1

STA VARIANCE

MACHINE INDEPENDENT FEATURES

Synopsis:

1. Introduction
2.Definition for compiler
3.Basis compiler function

Grammar

Lexical analysis

Syntactical analysis

Code generation

4.Basic step for followed in the compilation process

5.Machine dependent compiler features

Machine independent compiler features:

» It describes some common compiler features that are largely independent of the particular
machine be use.
» The basic step which is available in the machine independent compiler features.
% Structure variable
% Machine independent code optimization
% Storage allocation
% Block structured languages
Structure variable:
» During the compilation of program, we use structure variables such as arrays,records,
strings, and sets.
» We are primary concerned with the allocation on storage for such variables with the
generation of code to referred them.
» Consider first Pascal array declaration.
Example: A: ARRAY [1............. 10] of integer

» If each integer variable occupies one words of memory, then we must clearly allocate 10
words to store this array.
» Allocation for a multidimensional array is not much more difficult.
» Consider the following example is a 2 dimensional array.
B: ARRAY [0....... 3,1...... 6] of integer

» When we consider the generation of code for array reference, it becomes important to known
which array element corresponds to each word for allocated storage.

» The following figure shows 2 possible of storing the previously define array B:

> In figure (A); all array elements that have the same value of subscribe at stored in contiguous
location this is called row major order.

> If figure (B), all elements that have the same value second subscribe are storedto gather this
is called column major order.

Storage of B: ARRAY [0....... 3,1.....6]

(A) in row major order

0102|103 (04|05|06| 111213141516 |2.1]22(23|24]|25

26131323334 |35]|36

k]

— e

Row 0 Row 1 Row 2 Row 3

B) In column major order:

0,114,123 10,(2,2360,(1]2(3,]0,(1(2|301]23/0,|1]2]3

SN N TN

Columnl Col 2 Col 3 Col 4 Col 5 Col6
The order in which the values 10 are stored in a table (row order, column order)
1 2 3 4 5 6
001 |02 03 |04 0.5 0.6

11 1.2 1.3 1.4 1,5 1.6
2.1 2,2 2.3 2.4 2.5 2.6
3.1 3.2 3.3 3.4 3.5 3.6

Lt

> In row major order, the right most subscribe various most rapidly.

> In column major order the left most subscribe various most rapidly.

» This concept can be generalized easily to arrays with more than 2 subscript

» For multidimensional array, the generation of code depends on whether row major or column
major order is used to store the array.
Machine independent code optimization:

» Important source of code optimization is the elimination of common sub expression.

» The sub expression that appeared at more than one point in the program and compute the
same value.

» Consider the statement which is given below here the term 2*j is a common sub expression.

» An optimizing compiler should generate code so that multiplication is performed only once
and the result is used in the both places.

For example: code optimization by elimination of common sub expression and removal of loop

in variance.

X, y: ARRAY [1....10, 1...10] of integer.

F.or I:=1To 10 Do
X [1, 2* J-1]:=y[l, 2 *J]

8) +
9)*
10) -
11) *
12) *
13) -
14) +
15) *
16) :=
17) +
18) =
19) J
20)

2) JGT
3) -
4)*
5) *
6) -
7) -
8) +
9) *

#1

il
#2
i3
i4
i2
i6

i8
#2
i10
i9
i12
yli13]
#1
i14

#10
#1
#10

#1
#1
15
#3
#1
#10

#
111
#3

#10
#1
#10

#1
i5
#3
14

(A)

| {loop initialization}
(20)
T1 {subscript calculation for x}
i2
i3
i4
i5
i6
i7
i8
i9
i10
i11
i12
i13
[i17]{assignment operation}
i14 {end of loop}
I
next statement}

(B)

| {loop initialization}
(20) {subscript calculation for x}
T1
i2
i3
i4
i5
i6
i7

10) + i2 #3 112 {subscript calculation for V}
11) * i12 i13

12) := y[i13] I x[i7] {assignment operation}
13) + #1 114 {end of loop}

14) := i14 |

15)J 2

16) {next statement}

©
Common sub expression is usually dictated through the analysis of an intermediate form of
the program. It is shown in the program (B)
Another common source of code optimization is the removal of loop invariance.
The last source of code optimization is the substitution of a more efficient operation forless

efficient one.

The process of transforming the cost or an operation is called reduction is strength of an
operation.

The computation who’s operand values are known at compilation time that can beperformed

by the compiler this optimization is known as folding.

Storage allocation:

All programmers define variables were assign storage allocation within the object programas
their declarations were processed.

Temporary variables including the one use to save the written address there also assignfined
address within the program.

This simple type of storage assignment is called static allocation.

It is often used for languages that do not allow the recursive use of procedure are subroutine
and do not provide for the dynamic allocation of storage during execution.

The following figure illustrates the recursive invocation of a procedure usingstatic

storage
allocation.
vstem &= = = # —— System & — — " System & - —»
1) . —_
' ——| canste | &4+ = ——| cansve | < -II- -
1 Il II 1 1
1 Ll L1
: ' b
RETADR L _ 1 RETADR R S @ RETADR L - -1

2)

(EV]

: .
.
N 1
1 1
; i
i
SUB 1 SUB :
T :
1
3 N «
| I : Call SUB ;
1
1
1 1
! :
1
RETADR |- — = RETADR |- -

(B) ©

10

Block structured languages:

>

>
>

In some languages a program can be divided into units called blocks. A block is a portion of
a program that has the ability to declare its own identifiers
This definition of a block is also met by units such as procedures and functions in Pascal
Each procedure correspond to a block in the following example we shows the outline ofa
block structured program in a Pascal like languages
Here we use a terms

% Procedure

+ block interchangeably
Note that blocks may be nested with in other block.
Example: in the following example the procedure(b)&(d) are nested with in procedure (a),(c)
is nested with in procedure (b)
Each block will contain declaration of variables.
A block may also refer that are defined in any block that contain is, provided the same name.
Names are not refined inner block.

Example: nested of blocks in a source program

1) Procedure A;

2) VARYX,y,z: INTEGER
3) PROCEDURE B;

4) VARW, X, Y, z: REAL
5) PROCEDURE C;

6) VAR v, w: INTEGER
7) END {C},;

8) END {B},;

9) PROCEDURE D;

10) VAR X,Z: CHAR;

11) END {D},
12) END {A};
FIGURE (A)
Block Block Block level | Surrounding
Name number block
A 1 1 -
B 2 2 1
C 3 3 2
D 4 2 1
FIGURE (B)

>

In figure (A) as the beginning of each new block is recognized it is assigned the block
number in sequence.

11

The compiler can construct a table that describe the block structure

In fig: (B) the block level entry gives the hosting depth for each block.

The outer most block has 2 level number of 1and each other block has 2 level number that is
1 greater than that surrounding block.

The main problem which is arriased in block structured language is declaration problems.
Here most of the variable will be repeatedly arriased in each block

One common method for providing accepts a variables in surrounding block users called
display

Y V VYV

Y V VY

COMPILER DESIGN OPTIONS

Synopsis

1. Introduction
2.division into passes
3.interpretors
4.P-code compiler

5.compiler - compilers

Introduction:
» Here we considered some of the possible alternation for the design and construction ofa
compiler.
» It was simple one pass design which describes many features that usually required morethan
one pass to implement.
> Here we briefly discuss the general questions of dividing the compiler into andthe
advantages of 1- pass and multi pass design.
» The compiler consists of following design options.
< Division into passes
< Interpreters
% P- code compiler
% Compiler-compilers
Division into passes:
» Here we present a simple 1- pass compilation scheme for a subset of the Pascal language.
> In this design the compiler was driven by parsing process.
» The lexical scanner called when the Pascal needed another input token code generation
routine was involve as each language construct was recognized by parser
» The compilation process itself, which required only one pass over the program and no in term
ediate code generation steps was quit efficient.
Not all the languages can be translated by sub a one pass compiler.
Here the speed of compilation process is important for that one pass design might be referred
If programs are executed many times for each compilation or if the process large amount of
data, speed of execution becomes more important than speed of compilation

Y V VY

12

Multi pass compilers are also used when the amount of memory or other system resources is
severely limited
The requirement of each pass can be kept smaller if the work of compilation is divided into
several passes
Other factors may include the design of the compilers
If a compiler is divided into several passes, each pass become
% Simpler
% Easy understand
% Easy to write
% Easy to test
Different passes can be assign to different programmers and can be writtened and tested in

parallel which shortest the overall time require for compiler construction.

7

7

7

Interpreters:

>
>

>

Y V V

An interpreter process a source program written in a high level language compiler disk
The main difference in an interpreter a source program directly instead of translating to
machine code

It usually perform lexical and syntactical analysis functions and then translates thesource
program into an internal form

After translating the source program into an internal form the interpreter executethe
operation specified by the program

During this phase the interpreter can be viewed as set of subroutines

The execution of sub routine is driven by the internal form of the program

The process of translating a source program into some internal form is simpler and faster the
compiling it into machine code

The execution of translated program by an interpreter is much slower than the execution of
the machine code produced by the compiler

If speed of translation is of primary concerned and execution of translated program will be
short, than interpreter may be good choice

Advantages interpreters

>
>

YV VYV

Debugging facilities can be easy provided

Symbol table, source line numbers and other information from the source program are
usually written by the interpreters

The interpreters is attractive in educational environment for learning and program testing
It have a high speed of transaction

Execution time is less

It have more additional features

P-code compilers:[byte code compiler]:

>
>

It is very similar in concept to interpreters
Here the source program is analysis and converted into intermediate form which is then
execution interpretively

13

» With the p- code compiler this intermediated form is the machine language for a hypothetical

computer of an code pseudo-machine (or) p- machine

Translation and execution using a p- code compiler:

C Source program)

Compiler

Object program (p- code)

v

Execute

P-code
compiler

P-code

interpreter

» The above figure: the source program is compiled with help of p-code compiledand

procedure the object program as a result

» Then the p-code program is read and executed and control of p-code interpreter

Advantages of p-code compiler:
> Portability of software

» P-code object program can be executed on any machine that has p-code interpreter

14

Design of pseudo-machine (or) p-code machine

> ltisrelated to the requirement of language being compile. For example: P-code for a Pascal
compiler might include single P-instruction that performing ,
% Array calculation
% Handle of procedure entry and exit
% Perform elementary operations on set
» P- code compiler are designed for a single user running on a dedicated microcomputer
system
» Single user running on a dedicated micro computer system
> Here the execution p is relatively in significant because the system performance may differs
and the responds time for the requirest will be verify.
> For the execution speed, the p-code compiler support the use of machine languagesub
routine

Compiler-compilers
> Itisasoftware tool that can be used to help in the task of a compiler construction

» Such tools are known as compiler generators (or) translator writing system

» For example: automated compiler construction using a compiler — compilers

Lexical rules

Scanner

Compiler- Parser
compilers

|

| Code generation

Syntactical routines

In the above figure we have illustrated the process of using the compiler- compilers

The user (compiler writer) provides a description of a language to be translated

The description may construct set of lexical rule for defining tokens and the grammar for
source language

» Compiler-compilers use this information to generate a scanner and a parser directly

Y V V

15

» Others create tables for use of standard table driven scanning and passing routines that are
supplied by the compiler-compilers

Advantages of compiler — compilers

Easy of compiler construction and testing

The amount of work required from the user various from one compiler —compiler to another
It provides special languages

Provide notations, data structure and other facilities that can be used in writing of symatics
routines.

YV VYV

UNIT-III

SYLLABUS
What is an Operating System? - Process Concepts: Definition of Process - Process
States - Process States Transition - Interrupt Processing - Interrupt Classes - Storage
Management: Real Storage: Real Storage Management Strategies - Contiguous
versus Non-contiguous storage allocation - Single User Contiguous Storage
allocation- Fixed partition multiprogramming - Variable partition

multiprogramming.

OPERATING SYSTEM

An operating system (0S) is system software. It manages computer
hardware and software resources. It provides common services for computer
programs. Time-sharing operating systems schedule tasks for efficient use of the
system. It may also include accounting software for cost allocation of processor

time, mass storage, printing, and other resources.

The operating system acts as an intermediary between programs and the computer
hardware. The application code is usually executed directly by the hardware. It is
frequently making system calls to an OS function or is interrupted by it. Operating
systems are found on many devices that contain a computer - from cellular
phones and video game consoles to web servers and supercomputers. For hardware

functions such as input and output and memory allocation.

PROCESS- DEFINITIONS OF PROCESS
A program in execution
An asynchronous activity

The “animated sprit” of a procedure

=W N

The “locus of control” of a procedure in execution

5. That entity to which processors are assigned

6. The “dispatchable” unit

A process is a program at the time of execution. The process is more than the program
code. It includes the program counter, the process stack, and the content of the process
register, etc. The purpose of the process stack is to store temporary data, such as

subroutine parameters, return address and temporary variables.

An instance of a program running on a computer. The entity that can be assigned to
and executed on a processor. A unit of activity characterized by the execution of a
sequence of instructions, a current state, and an associated set of system resources. An
instance of a program running on a computer. The entity that can be assigned to and
executed on a processor. A unit of activity characterized by the execution of a sequence

of instructions, a current state, and an associated set of system resources.

L S :
Start , > Ready ' Running > Terminated
S T—— = R— n—
\ /
\ ¥
Wait
T

PROCESS STATES
Start: The process is being created.
Running: The process is being executed.
Waiting: The process is waiting for some event to occur.
Ready: The process is waiting to be assigned to a processor.
Terminate: The process has finished execution.

Many processes can be running in any processor at any time. But many processes may
be in ready queue waiting for states. Consider the figure below depicts the state

diagram of the process states.

In a uniprocessor system only one process may be running at a time. It several may be
ready and several blocked. The operating system maintains a ready list of ready
processes and a blocked list of blocked processes. The ready list is maintained in
priority order. The next process to receive a processor is the first one in the list (i.e,
the process with the highest priority). The blocked list is typically unordered -
processes do not become unblocked (i.e., ready) in priority order. Unblock in the order

in which the events they are waiting for occur.
PROCESS STATE TRANSITIONS

When a user runs a program, processes are created and inserted into the ready list. A
process moves toward the head of the list as other processes complete their turns using
a processor. When a process reaches the head of the list, a processor becomes available,

that process is given a processor.

Schedule / Dispatch

Completion

“Priority / Time

1o
quantum

Reguest

Completion

Suspend
I ready

Process completed l/o
but still in suspend

Resume Suspend

Ready | Blocked
l

M o WA i R - S et el e
|' 1]
| | |
| Running \l ‘
&
| S | & |
%,
| & o | |
= | |
J?
| & | |
| I
| |
| |
| |
| B

New to Ready

The operating system creates a process. And prepares the process to be executed by,

then the operating system moves the process into the ready queue.
Ready to Running

When it is time to select a process to run, the operating system selects one of the jobs
for the ready queue and move the processes from the ready state to the running state.
It is said to make a state transition from the ready state to the running state. The act of
assigning a processor to the first process on the ready list is called dispatching. It is

performed by a system entity called the dispatcher. The state transition is,
dispatch (process name): ready->running
Running to Terminated

When the execution of a process has completed then the operating system terminates
that process from running state. Sometimes the operating system terminates the
processes for some other reasons also include time limit exceeded, memory

unavailable access violation, protection error, [/0 failure, data misuse and so on.
Running to Ready

When the time slot for the processor expires or if the processor receives an interrupt
signal, then the operating system shifts the running process to the ready state.
Processes that are in the ready or running states are said to be awake. To prevent any
one process from monopolizing (controlling) the system, either accidentally or
maliciously the operating system sets a hardware interrupting clock (also called an
interval timer) to allow a process to run for a specific time interval or quantum. The

state transition is,
timerrunout (process name): running->ready

For example, process P1 is being executed by the processor, at that time processor, P2
generates an interrupt signal to the processor. Then the processor compares the
priorities of process P1 and P2. If P1>P2 then the processor continues executing P1.
Otherwise, the processor switches to process P2, and process P1 is moved to the ready

state.

Running to Waiting

A process is put into the waiting state if the process needs an event to occur, oran I/0
device is to read. The operating system does not provide the I/O or event immediately

then the process is moved to the waiting state by the operating system.
Waiting to Ready

A process in the blocked state is moved to the ready state when the event for which it

has been waiting occurs.

For example, a process is in running state needs an I/0 device, then the process
moved to wait or blocked state. When the 1/0 device is provided by the operating

system, the process moved to the ready state from waiting or blocked state.
Running to Block

If a running process initiates an input/output operation before its quantum expires.
The running process voluntarily relinquishes the CPU. (i.e the process blocks itself

pending the completion of the input/output operation). The state transition is,
block (process name): running->blocked
Block to Ready

The only other allowable state transition in three-state model occurs when an 1/0
operation (or some other event the process is waiting for) completes. In this case, the
operating system transitions the process from the blocked to the ready state. The state

transition is,
wakeup (process name): blocked->ready

INTERRUPT

Interrupts enable software to respond to signals from hardware. The operating system
may specify a set of instructions, called an interrupt handler to be executed in response
to each type of interrupt. This allows the operating system to gain control of the
processor to manage system resources. Interrupt is called a trap. Synchronous with
the operation of the process. For example, dividing by zero or referencing protected

memory. Interrupts may also be caused by some event that is unrelated to a process's

current instruction. Asynchronous with the operation of the process. For example, the
keyboard generates an interrupt when a user presses a key. The mouse generates an
interrupt when it moves or when one of its buttons is pressed. Interrupts provide a
low-overhead means of gaining the attention of a processor. Polling is an alternative
approach for interrupts. Processor repeatedly requests the status of each device.

Increases in overhead as the complexity of the system increases.
Difference between polling and interrupts

A simple example microwave oven. A chef may either set a timer to expire after an
appropriate number of minutes (the timer sounding after this interval interrupts the
chef) The chef may regularly peek through the oven's glass door and watch as the

roast cooks (this kind of regular monitoring is an example of polling).
Interrupt processing

Processor control

Ti AT
e | Process P4

|
lnter,ubt |

Interrupting clock 2)
(3)

Interrupt vector ¥
(4) Execution context

————— saved to temporary
A location in memory

| Interrupt
5 | handler
|

/

!
: Process P,

(6)

Handling Interrupts

1. The interrupt line, an electrical connection between the mainboard and a processor.
It becomes active—devices such as timers, peripheral cards and controllers send
signals that activate. The interrupt line to inform a processor that an event has
occurred (e.g., a period of time has passed or an I/0 request has completed). Most
processors contain an interrupt controller that orders interrupts according to their
priority so that important interrupts are serviced first. Other interrupts are queued

until all higher-priority interrupts have been serviced.

2. After the interrupt line becomes active, the processor completes execution of the
current instruction, then pauses the execution of the current process. To pause process
execution, the processor must save enough information. The process can be resumed

at the correct place and with the correct register information.

3. The processor then passes control to the appropriate interrupt handler. Each type
of interrupt is assigned a unique value that the processor uses as an index into the
interrupt vector, which is an array of pointers to interrupt handlers. The interrupt
vector is located in memory that processes cannot access, so that processes cannot

modify its contents.
4. The interrupt handler performs appropriate actions based on the type of interrupt.

5. After the interrupt handler completes, the state of the interrupted process is

restored.

6. The interrupted process (or some other "next process") executes. It is the
responsibility of the operating system to determine whether the interrupted process

or some other "next process" executes.

Interrupt classes

There are six interrupt classes. These are,
SVC (Supervisor call) interrupts
[/0 interrupts
External interrupts

1

2

3

4. Restart interrupts
5. Program check interrupts
6

Machine check interrupts
SVC (Supervisor call) interrupts

These are initiated by a running process that executes the SVC instruction. It is a user-
generated request for a particular system service such as performing input/output. It
helps keep the operating system secure from the users. A user may not arbitrarily

enter the operating system. The user must request a service through as SVC.

I/0 interrupts

These are initiated by the input/output hardware. They signal to the CPU that the
status of a device has changed. /O interrupts are caused when an I/0 operation

completes, when an I/0 error occurs.
External interrupts

These are caused by various events including the expiration of a quantum on an
interrupting clock. The pressing of the console’s interrupt key by the operator or the

receipt of a signal from another processor on a multiprocessor system.
Restart interrupts

These occur when the operator presses the console’s restart button. When a restart
SIGP (Signal Processor) instruction arrives from another processor on a

multiprocessor system.
Program check interrupts

These are caused by a wide range of problems. It may occur as a program’s machine
language instructions are executed. Example, division by zero, arithmetic overflow or
underflow. Data in wrong format attempt to reference a memory location beyond the

limits of real storage memory.

Machine check interrupts

These are caused by malfunctioning (not working) hardware.
STORAGE MANAGEMENT

The term storage management encompasses the technologies and processes
organizations use to maximize or improve the performance of their data storage
resources. It is a broad category that includes virtualization, replication, mirroring,
security, compression, traffic analysis, process automation, storage provisioning and
related techniques. The memory management function keeps track of the status of
each memory location, either allocated or free. It determines how memory is allocated
among competing processes, deciding which gets memory, when they receive it, and

how much they are allowed. When memory is allocated, it determines which memory

locations will be assigned. It tracks when memory is freed or unallocated and updates

the status.
Storage Hierarchy

Storage

access

time

decreases. Cache

Storage H storage

access h Programs and

§pee(1 data may be

increases. - referenced by

Storage v tl'}e G

Cost directly.

per bit Primary

increases. stotage

Storage -4

capacity

decreases.

\ L Programs and
data must first
\ be moved to
Secondary >~ primary storage
storage [before they

may be
referenced by the CPU.

Hierarchical memory organization

Programs and data must be in main memory before the system can execute or
reference them. Those that the system does not need immediately may be kept in
secondary storage until needed, then brought into main memory for execution or

reference.

Secondary storage media, such as tape or disk, are generally far less costly per bit than
main memory and have much greater capacity. Main storage may generally be
accessed much faster than secondary storage. The memory hierarchy contains levels
characterized by the speed and cost of memory in each level. Systems move programs
and data back and forth between the various levels. The cache is a high-speed storage

that is much faster than main storage.

Cache memory imposes one more level of data transfer on the system. Cache storage
is extremely expensive compared with main storage. Programs in main memory are
transferred to the cache before being executed—executing programs from cache is

much faster than from main memory.

Storage management strategies

Memory management strategies are designed to obtain the best possible use of main

memory.
They are divided into:

1. Fetch strategies
2. Placement strategies

3. Replacement strategies
Fetch strategies

It determines when to move the next piece of a program or data to main memory from

secondary storage.
It has divided them into two types,

1. Demand fetch strategies

2. Anticipatory fetch strategies

Demand fetch strategy: The system places the next piece of program or data in main
memory when a running program references it. Designers believed that because
cannot in general predict the paths of execution that programs will take, the overhead

involved in making guesses would far exceed expected benefits.

Anticipatory fetch strategies: Today, however, many systems have increased
performance by employing anticipatory fetch strategies, which attempt to load a piece

of program or data into memory before it is referenced.
Placement strategies

It determines where in main memory the system should place incoming program or
data pieces. Consider first-fit, best-fit, and worst-fit memory placement strategies.
program and data can be divided into fixed-size pieces called pages. It can be placed

in any available page frame.

Replacement strategies

When memory is too full to accommodate a new program, the system must remove
some (or all) of a program or data that currently resides in memory. The system's

replacement strategy determines which piece to remove.
DEFINITION OF CONTIGUOUS MEMORY ALLOCATION

The operating system and the user’s processes both must be accommodated in the

main memory. The main memory is divided into two partitions.

1. at one partition the operating system resides

2. atother the user processes reside

In usual conditions, the several user processes must reside in the memory at the same
time. It is important to consider the allocation of memory to the processes. The
Contiguous memory allocation is one of the methods of memory allocation. In
contiguous memory allocation, when a process requests for the memory. A single
contiguous section of memory blocks is assigned to the process according to its

requirement.

10Kb memory block

4Kb 2Kb 4Kb
Processl

EEEEEEEEEE
LI

DEFINITION NON-CONTIGUOUS MEMORY ALLOCATION

SKb Process2

The Non-contiguous memory allocation allows a process to acquire the several
memory blocks at the different location in the memory according to its requirement.
The non-contiguous memory allocation also reduces the memory wastage caused due
to internal and external fragmentation. As it utilizes the memory holes, created during

internal and external fragmentation.

AEEEEEEEEn

Paging and segmentation are the two ways which allow a process physical address

space to be non-contiguous. In non-contiguous memory allocation, the process is
divided into blocks (pages or segments) which are placed into the different area of
memory space according to the availability of the memory. The non-contiguous
memory allocation has an advantage of reducing memory wastage but,
it increases the overheads of address translation. The process is placed in a different
location in memory, it slows the execution of the memory because time is consumed
in address translation.

Contiguous versus Non-contiguous Storage allocation

Contiguous Memory Allocation Non-Contiguous Memory Allocation

The non-Contiguous Memory allocation
The contiguous Memory Allocation

technique divides the process into
technique allocates one single

several blocks and then places them in
contiguous block of memory to the

the different address space of the
process and memory is allocated to the

memory that is memory is allocated to the
process in a continuous fashion.

process in a non-contiguous fashion.

In this Allocation scheme, there is no | While in this scheme, there is overhead in
overhead in the address translation | the address translation while the
while the execution of the process. execution of the process.

In Non-contiguous Memory allocation
In Contiguous Memory Allocation, the

execution of the process is slow as the
process executes faster because the

process is in different locations of the
whole process is in a sequential block.

memory.
Contiguous Memory Allocation 1is | The non-Contiguous Memory Allocation

easier for the Operating System to | scheme is difficult for the Operating

control. System to control.

Contiguous Memory Allocation

In this, the memory space is divided
into fixed-sized partitions and each
partition is allocated only to a single
process.

Contiguous memory allocation

includes single partition allocation

and multi-partition allocation.

In this type of memory allocation,
generally, a table is maintained by the
operating system that maintains the list
of all occupied

available and

partitions in the memory space.
There is wastage of memory in

Contiguous Memory allocation.

In this type of allocation, swapped-in
processes are arranged in the originally

allocated space.

Non-Contiguous Memory Allocation

In this scheme, the process is divided into
several blocks and then these blocks are
placed in different parts of the memory
according to the availability of memory
space.

allocation

Non-Contiguous memory

includes Paging and Segmentation.

In this of memory allocation

type
generally, a table has to be maintained
for each process that mainly carries the
base addresses of each block that has
been acquired by a process in the

memory.

There is no wastage of memory in Non-

Contiguous Memory allocation.

In this type of allocation, swapped-in
processes can be arranged in any place in

the memory.

SINGLE USER CONTIGUOUS STORAGE ALLOCATION

Early computer systems allowed only one person at a time to use a machine. All the

machine's resources were dedicated to that user. Billing was straightforward—the

user was charged for all the resources whether or not the user's job required them. In

fact, the normal billing mechanisms were based on wall clock time. The system

operator gave the user machine for some time interval and charged a flat hourly rate.

The programmer wrote all the code necessary to implement a particular application,

including the highly detailed machine-level input/output instructions.

D G e]

Operating system

User

The memory organization for a typical single-user contiguous memory allocation system

System designers consolidated input/output coding that implemented basic
functions into an input/output control system (IOCS). The programmer called I0OCS
routines (procedures) to do the work instead of having to "reinvent the wheel" for each
program. The 10CS greatly simplified and expedited (advanced) the coding process.
The implementation of input/output control systems may have been the beginning of
today's concept of operating systems.
Advantages and Disadvantages of Single Contiguous Allocation
Advantages

1. Simple Allocation

2. Entire Scheme requires less memory

3. Easyto implement and use
Disadvantages

1. Memory is not fully utilized

2. Processor (CPU) is also not fully utilized

3. User program is being limited to the size available in the main memory

OVERLAYS

How contiguous memory allocation limited the size of programs that could execute
on a system? One way in which a software designer could overcome the memory
limitation was to create overlays, which allowed the system to execute programs

larger than main memory.

Overlay Structure

0
Qperating system

Portion of user code

Wser program with memory
requirernent larger than available

portion of main memory

and data that must o
rermain n main —_TT T e e e — — -
ey i I
of u:cwuhhornduwm ' Initialization Processing Output
|, prase phase phase
b b b o
O T }
(G |
&= .
Creerlay | i
arey
I
I

L

@ Load initialization phase at b and nn,
(2} Then load procesting phase at b and run.
@ Then load cutput phase st b and run

The programmer divides the program into logical sections. When the program does
not need the memory for one section. The system can replace some or all of it with the
memory for a needed section. Overlays enable programmers to "extend" main
memory. However, manual overlay requires careful and time-consuming planning.
The programmer often must have detailed knowledge of the system's memory
organization. A program with a sophisticated overlay structure can be difficult to
modify. Indeed, as programs grew in complexity, by some estimates as much as 40
percent of programming expense were for organizing overlays. It became clear that
the operating system needed to insulate the programmer from complex memory
management tasks such as overlays.

Protection in a Single-User System

A process can interfere with the operating system's memory - either intentionally or
inadvertently (mistake) -by replacing some or all of its memory contents with other
data. If it destroys the operating system, then the process cannot proceed. If the
process attempts to access memory occupied by the operating system.

Boundary register

The user can detect the problem, terminate execution, possibly fix the problem and re-
launch the program. Protection in single-user contiguous memory allocation systems

can be implemented with a single boundary register built into the processor.

Processor

Operating system

a - Boundary
g register

3 ? wag=s

User

The system prevents
the user from
accessing the

b addresses less than a.

Unused

Memory protection with single-user contiguous memory allocation

The boundary register contains the memory address at which the user's program
begins. Each time a process references a memory address, the system determines if the
request is for an address greater than or equal to that stored in the boundary register.
The hardware that checks boundary addresses operates quickly to avoid slowing
instruction execution. The single boundary register represents a simple protection

mechanism.
Single-Stream Batch Processing

Early single-user real memory systems were dedicated to one job for more than the
job's execution time. Jobs generally required considerable setup time during which the
operating system was loaded tapes and disk packs were mounted. When jobs
completed, they required considerable teardown time as tapes and disk packs were
removed. Designers realized that if they could automate various aspects of job-to-job
transition. It could reduce considerably the amount of time wasted between jobs. This

led to the development of batch-processing systems.

In single stream batch processing, jobs are grouped in batches by loading them
consecutively onto tape or disk. A job stream processor reads the job control language
statements and facilitates the setup of the next job. Batch-processing systems greatly
improved resource utilization and helped demonstrate the real value of operating
systems and intensive resource management. Single-stream batch-processing systems

were the state of the art in the early 1960s.

REAL MEMORY MANAGEMENT TECHNIQUES

The main memory has to accommodate both the operating system and user space.
Now, here the user space has to accommodate various user processes. We also want

these several user processes must reside in the main memory at the same time.
[l Fixed/Static Partitioning
[l Variable/Dynamic Partitioning
[l Simple/Basic Paging
0 Simple/Basic Segmentation

Fixed partition multiprogramming

For a process doing intensive calculation:

,,,,, =
s
a3
Shaded area indicates

"Processor in use.”

For a process doing regular input/output: >
B i ’ B 7 B
| ; || b=l Li
Aosd T e Ty S B A S T Sy
Use Use Use Use
processor processor processor processor
Wait for Wait for Wait for
/O completion. I/O completion, /O completion.

Even with batch-processing operating systems, single-user systems still waste a
considerable amount of the computing resource. The program consumes the CPU
resource until an input or output is needed. When the I/0 request is issued, the job
often cannot continue until the requested data is either send or received. Input and
output speeds are extremely slow compared with CPU speeds. Increase the utilization
of the CPU by intensive management. This time chose to implement
multiprogramming systems. Several users simultaneously compete for system
resources. The job currently waiting for I/0 will produce the CPU to another job ready
to calculations if indeed, another job is waiting. Both input/output and CPU

calculations can occur simultaneously.

Advantage of Multiprogramming

[tis necessary for several jobs to reside in the computer’s main storage at once. When
one job requests input/output, the CPU may be immediately switched to another and
may do calculations without delay. Multiprogramming requires considerably more
storage than a single user system. The improved resource use for the CPU. The

peripheral devices more than justifies the expense of additional storage.
Fixed Partition Multiprogramming: Absolute Translation and Loading

Fixed partition multiprogramming in which main storage was divided into a number
of fixed-size partitions. Each partition holds a single job. The CPU was switched

rapidly between users to create the illusion of simultaneity.

0 .
Operating system
: Job queue for partition 1
These jobs e af
run only in aee I o
partition 1. | | Stk oni
Job queue for partition 2 bi
These jobs T T "
run only in o /*\ Partition 2
partition 2. cl
Job queue for partition 3
These jobs T T 1
run only in v o= Partition 3
partition 3.
d

Jobs were translated with absolute assemblers and compilers to run only in a specific
partition. Job was ready to run and its partition was occupied. Then that job had to
wait, even if other partitions were available. This resulted in waste of the storage

resource. But the OS was relatively straightforward to implement.

Operating system

Job queue for partition 1 a
(No jobs
waiting for Partition 1
partition 1) (empty)
Job queue for partition 2 b
(No jobs
waiting for Partition 2
partition 2) (empty)

Job queue for partition 3

Partition 3
(in use)

Memory waste under fixed partition multiprogramming with absolute translation and loading

An extreme example of poor storage utilization in fixed partition multiprogramming
with absolute translation and loading. Jobs waiting for partition 3 are small and could
“fit” in the other partitions. But with absolute translation and loading, these jobs may

run only in partition 3. The other two partitions remain empty.

Fixed partition multiprogramming: relocatable translation and loading

Operating system

Partition 1
Job queue

Partition 2

Partition 3

d

A job may be placed in any
available partition in which it fits.

Relocating compilers, assemblers and loaders are used to produce relocatable
programs. It can run in any available partition that is large enough to hold them. This
scheme eliminates some of the storage waste characteristic in multiprogramming with

absolute translation and loading.
Protection in multiprogramming systems

Allowing Relocation and Transfers between partitions. Protection implemented by
the wuse of several boundary registers: low and high boundary registers,
or base register with length. Fragmentation occurs if user programs cannot

completely fill a partition - wasteful.

Processor

(0] ti t :
REIAEBIBYRIEN Currently active

a 2

partition
Partition 1
. u—""""Tw b | Lowboundary
Partition 2 /0 ¢ | High boundary
c

Partition 3

Fragmentation in fixed partition multiprogramming

Storage fragmentation occurs in every computer system. In fixed partition
multiprogramming systems, fragmentation occurs. Either user jobs do not completely
fill their designed partitions. A partition remains unused if it is too small to hold a
waiting job. Consider the warehouse example, multiple jobs of different types
(perhaps size) entering storage in different partitions. Several users simultaneously
compete for system resources. Switch between I/0 jobs and calculation jobs for
instance. To take advantage of this sharing of CPU, important for many jobs to be

present in main memory.

0
Operating system
a
Partition 1
b
Used memory
Partition 2
C Unused memory
Partition 3
d

Internal fragmentation in a fixed partition multiprogramming system

VARIABLE PARTITION MULTIPROGRAMMING

System designers found fixed partitions too respective. It decided that an obvious
improvement, to allow jobs to occupy as much storage needed. No fixed boundaries
would be observed. Instead, jobs would be given as much storage as they required is

called variable partition multiprogramming.

In variable partition multiprogramming the jobs arrive, the scheduling mechanisms
decide for proceed. They are given much storage as they need. There is no wastage a
job partition is exactly the size of the job. Every storage organization scheme involves

some degree of waste.

In variable partition multiprogramming, the waste does not become obvious until jobs
start to finish. Leave holes in the main storage. These holes can be used for other jobs.

These remaining holes get smaller eventually becoming too small to hold new jobs.

Initial partition assignment in variable partition multiprogramming

Job queue

| _Pgneeds 9MB.
Pg needs 18MB.
P;7 needs 11MB.
Pg needs 32MB.
Ps needs 14MB. |
| Paneeds 25MB.
| P3 needs 10MB.
| Pyneeds 20MB. |
_ Pineeds 15M8B. |

Operating Operating Operating Operating
system system system system
Py 15MB Py 15MB Py 15MB Py 15MB
P; 20MB P, 20MB P, 20MB
P3 10MB P3 10MB
Free —
Free
Free Ps 25MB
Free
Operating system Operating system Operating system
Py Py P
e
P (i e ™ Hole Hole
2 P finishes
and frees its
memory.
P3 P3 P3
/'-—_\
Pa Pa | ™ Hole
P4 finishes
and frees its
Ps Ps memory. Ps
Hole Hole Hole

Variable partition multiprogramming characteristics
00 Coalescing holes
0 Storage compaction
0 Storage placement strategies

Coalescing holes

Operating system Operating system Operating system
Other Other Other
processes processes processes

2MB hole 2MB hole
>" 7MB hole
P1 (5MB) Operating

1 —m» 5MBhole

system
combines
adjacent
P1 finishes holes to
Other and frees Other form a Other
processes its processes | single processes
memory. larger hole.

Job finishes in variable partition multiprogramming system, check whether the
storage being freed (unrestricted) borders on other free storage areas (holes). The free

storage list,

+* An additional hole.

% A single hole reflecting the merger of the existing hole.

R/

* New adjacent hole.

The process of merging adjacent holes to form a single larger hole in called coalescing.

Storage compaction

Operating system Operating system

TS e e T e In use
> In use

Free /

In use Y > In use

Free

Free
In use

Free

Operating system places
all “in use” blocks together
leaving free memory as a
single large hole.

Storage compaction in variable partition multiprogramming

When a job requires a certain amount of main storage no individual hole is large
enough to hold the job. Even though the sum of all the holes is larger than the storage

needed by the new job. The technique of storage compaction involves moving all

occupied areas of storage to one end or the other of main storage. Rearranges memory
into a single contiguous block free space. A single contiguous block of occupied space.

It is also referred as burping the storage or garbage collection.
Storage placement strategies

1. Best fit strategy
An incoming job is placed in the hole where it best fits (i.e., the amount of free
space left is minimal)
2. Firstfit strategy
Placed in the first available slot large enough to hold the job.
3. Worst fit strategy
Place in storage in the largest slot available. The remaining may still be large

enough to hold another job.
First fit strategy

This method keeps the free/busy list of jobs organized by memory location, low-
ordered to high-ordered memory. In this method, first job claims the first available
memory with space more than or equal to its size. The operating system doesn’t search
for appropriate partition but just allocate the job to the nearest memory partition

available with sufficient size.

(a) First-fit strategy 0

Place job in first memory hole on
free memory list in which it will fit.

Operating system

16MB hole
b
Free Memory List (Kept in random order.) In use
. T c
Start 14MB hole
address Length d :
[Eawia _1;51\/181 | Request for e i
Tl s e 13MB o ¢|_5MB hole
o 5MB
In use
C 14MB g
g 30MB 30MB hole

Best fit strategy

This method keeps the free/busy list in order by size — smallest to largest. In this
method, the operating system first searches the whole of the memory according to the
size of the given job and allocates it to the closest-fitting free partition in the memory,
making it able to use memory efficiently. Here the jobs are in the order from smallest

job to largest job.

(b) Best-fit strategy —

Place process in the smallest g ﬂ’i‘atﬂg e
possible hole in which it will fit.

16MB hole

Free Memory List (Kept in ascending order i In use
by hole size. S
Start ’) 14MB hole
address Length | , d

Request for | 5l In use

€ 5MB e MR ey ~ 5MB hole
[EME | | In use

a 16MB | g
g 30MB 30MB hole

s

Worst fit strategy

In this allocation technique, the process traverses the whole memory and always
search for the largest hole/partition, and then the process is placed in that
hole/partition. It is a slow process because it has to traverse the entire memory to

search the largest hole.

(c) Worst-fit strategy 01 ‘
; Operating system
Place process in the largest :
possible hole in which it will fit. 16MB hole
bl
|
Free Memory List (Kept in descending order c \ In use
Start by hole size.) R
address Length d
[T o e Pecectiior | 5 In use
30MB — — — —| Requestio
ﬁ e 13MB f 5MB hole
4 L In use
C 14MB g
e 5MB ' | 30MB hole

eoe
>

SYSTEM SOFTWARE AND OPERATING SYSTEM

Unit IV

Virtual Storage: Virtual Storage Management Strategies — Page Replacement Strategies — Working
Sets — Demand Paging — Page Size. Processor Management: Job and Processor Scheduling:
Preemptive Vs Non-preemptive scheduling — Priorities — Deadline scheduling.

VIRTUAL STORAGE

Virtual storage management strategies

There are three main strategies namely

Fetch strategies — concerned with when a page or segment should be brought from secondary
to primary storage

Placement strategies — concerned with where in primary storage to place an incoming page or
segment

Replacement strategies — concerned with deciding which page or segment to displace to make

room for an incoming page or segment when primary storage is already fully committed

Page replacement algorithms

There are many page replacement algorithms and the most important three are FIFO, optimal
replacement and least recently used. This subsection explains the above three algorithms.
FIFO

The simplest page replacement algorithm is first in first out. In this scheme, when a page
must be replaced, the oldest page is chosen. For example consider the page reference string
1,56,1,7,1,57,6,1,5,1,7

For athree frame case, the FIFO will work as follows. Let all our 3 frames are initially empty.
11177766

5551117

666555

You can see, FIFO creates eight page faults.

Optimal replacement

In optimal page replacement algorithm, we replace that page which will not be used for the

longest period of time. For example for the reference string

1,56,1,7,1,57,6,1,5/1,7
with 3 frames, the page faults will be as follows

111111

55555

6767

You can see that Optimal replacement, creates six page faults

Least recently used

Most of the case, predicting the future page references is difficult and hence implementing
optimal replacement is difficult. Hence there is a need of other scheme which approximates the
optimal replacement. Least recently used (LRU) schemes approximate the future uses by the past
used pages. In LRU scheme, we replace those pages which have not been used for the longest
period of time.

For example for the reference string

1,56,1,7,1,5,7,6,1,5/1,7
with 3 frames, the page faults will be as follows

111116667

55777755

6655111

You can see that LRU creates nine page faults

Working sets

If the number of frames allocated to a low-priority process falls below the minimum
numberrequired, we must suspend its execution. We should then page out it remaining pages,
freeing all of its allocated frames. A process is thrashing if it is spending more time paging than
executing.

Thrashing can cause severe performance problems. To prevent thrashing, we must
provide a process with as many frames as it needs. There are several techniques available to
know how many frame a process needs. Working sets is a strategy which starts by looking at
what a program is actually using.

Demand paging
Demand paging is the most common virtual memory system. Demand paging is similar to a

paging system with swapping. When we need a program, it is swapped from the backing storage.

There are also lazy swappers, which never swaps a page into memory unless it is needed.
The lazy swapper decreases the swap time and the amount of physical memory needed, allowing

an increased degree of multiprogramming.

Page size
There is no single best page size. The designers of the Operating system will decide the
page
size for an existing machine. Page sizes are usually be in powers of two, ranging from 28 to 212
bytes or words. The size of the pages will affect in the following way.
a) Decreasing the page size increases the number of pages and hence the size of the page
table.
b) Memory is utilized better with smaller pages.
¢) For reducing the 1/0O time we need to have smaller page size.
d) To minimize the number of page faults, we need to have a large page size

PROCESSOR MANAGEMENT:
Introduction:

When one or more process is runnable, the operating system must decide which oneto run
first. The part of the operating system that makes decision is called the Scheduler; the algorithm
it uses is called the Scheduling Algorithm.

An operating system has three main CPU schedulers namely the long term scheduler,
short term scheduler and medium term schedulers. The long term scheduler determines which
jobs are admitted to the system for processing. It selects jobs from the job pool and loads them
into memory for execution. The short term scheduler selects from among the jobs in memory
which are ready to execute and allocated the cpu to one of them. The medium term scheduler
helps to remove processes from main memory and from the active contention for the cpu and
thus reduce the degree of multiprogramming.

The cpu scheduler has another component called as dispatcher. It is the module that
actually gives control of the cpu to the process selected by the short term scheduler which
involves loading of registers of the process, switching to user mode and jumping to the proper

location.

Before looking at specific scheduling algorithms, we should think about what the
scheduler is trying to achieve. After all the scheduler is concerned with deciding on policy, not
providing a mechanism. Various criteria come to mind as to what constitutes a good scheduling
algorithm. Some of the possibilities include:

1. Fairness — make sure each process gets its fair share of the CPU.

2. Efficiency (CPU utilization) — keep the CPU busy 100 percent of the time.

3. Response Time [Time from the submission of a request until the first response is produced] —
minimize response time for interactive users.

4. Turnaround time [The interval from the time of submission to the time of completion]

— minimize the time batch users must wait for output.

5. Throughput [Number of jobs that are completed per unit time] — maximize the number of jobs
processed per hour.

6. Waiting time — minimize the waiting time of jobs

Preemptive Vs Non-Preemptive

The Strategy of allowing processes that are logically runnable to be temporarily
suspended is called Preemptive Scheduling. ie., a scheduling discipline is preemptive if the CPU
can be taken away. Preemptive algorithms are driven by the notion of prioritized computation.
The process with the highest priority should always be the one currently using the processor. If a
process is currently using the processor and a new process with a higher priority enters, the ready
list, the process on the processor should be removed and returned the ready list until it is once
again the highest-priority process in the system.

Run to completion is also called Nonpreemptive Scheduling. ie., a scheduling discipline
is nonpreemptive if, once a process has been given the CPU, the CPU cannot be taken away from
that process. In short, Non-preemptive algorithms are designed so that once a process enters the
running state(is allowed a process), it is not removed from the processor until it has completed its
service time (or it explicitly yields the processor). This leads to race condition and necessitates
of semaphores, monitors, messages or some other sophisticated method for preventing them. On
the other hand, a policy of letting a process run as long as it is wanted would mean that some
process computing 1 to a billion places could deny service to all other processes

indefinitely.

Priorities

A priority is associated with each job, and the cpu is allocated to the job with the highest
priority. Priorities are generally some fixed numbers such as 0 to 7 or 0 to 4095. However there
is no general agreement on whether O is the highest or lowest priority. Priority can be defined
either internally or externally. Examples of internal priorities are time limits, memory
requirements, number of open files, average 1/O burst time, CPU burst time, etc. External
priorities are given by the user.

A major problem with priority scheduling algorithms is indefinite blocking or starvation.
A solution to this problem is aging. Aging is a technique of gradually increasing the priority of
jobs that wait in the system for a long time.

Deadline scheduling

Certain jobs have to be completed in specified time and hence to be scheduled based on
deadline. If delivered in time, the jobs will be having high value and otherwise the jobs will be
having nil value. The deadline scheduling is complex for the following reasons
a) Giving resource requirements of the job in advance is difficult
b) A deadline job should be run without degrading other deadline jobs
c) Inthe event of arriving new jobs, it is very difficult to carefully plan resource requirements

d) Resource management for deadline scheduling is really an overhead

SYSTEM SOFTWARE AND OPERATING SYSTEM

UNIT -V

Device and Information Management Disk Performance Optimization: Operation of moving head
disk storage — Need for disk scheduling — Seek Optimization — File and Database Systems: File
System — Functions — Organization — Allocating and freeing space — File descriptor — Access control

matrix.

DEVICE AND DISK MANAGEMENT

Introduction

In multiprogramming systems several different processes may want to use the system's
resources simultaneously. For example, processes will contend to access an auxiliary storage
device such as a disk. The disk drive needs some mechanism to resolve this contention, sharing
the resource between the processes fairly and efficiently.

A magnetic disk consists of a collection of platters which rotate on about a central
spindle. These platters are metal disks covered with magnetic recording material on both sides.
Each disk surface is divided into concentric circles called tracks. Disk divides each track into
sectors, each typically contains 512 bytes. While reading and writing the head moves over the
surface of the platters until it finds the track and sector it requires. This is like finding someone's
home by first finding the street (track) and then the particular house number (sector). There is
one head for each surface on which information is stored each on its own arm. In most systems
the arms are connected together so that the heads move inunison, so that each head is over the
same track on each surface.

The term cylinder refers to the collection of all tracks which are under the heads at any
time. In order to satisfy an /O request the disk controller must first move the head to the correct
track and sector. Moving the head between cylinders takes a relatively long time so in order to
maximize the number of 1/0O requests which can be satisfied the scheduling policy should try to
minimize the movement of the head. On the other hand, minimizing head movement by always
satisfying the request of the closest location may mean that some requests have to wait a long
time. Thus, there is a trade-off between throughput (the average number of requests satisfied in

unit time) and response time (the average time between a request arriving and it being satisfied).

Need for Disk Scheduling

Access time has two major components namely seek time and rotational latency.
Seektime is the time for the disk are to move the heads to the cylinder containing the desired
sector. Rotational latency is the additional time waiting for the disk to rotate the desired sector to
the disk head. In order to have fast access time we have to minimize the seek time which is
approximately equal to the seek distance.

Disk bandwidth is the total number of bytes transferred, divided by the total time between
the first request for service and the completion of the last transfer. The operating system is
responsible for using hardware efficiently for the disk drives, to have a fast access time and disk

bandwidth. This in turn needs a good disk scheduling.

FILE SYSTEMS AND ORGANIZATION

In computing, a file system (often also written as file system) is a method for storing and
organizing computer files and the data they contain to make it easy to find and access them. File
systems may use a data storage device such as a hard disk or CD-ROM and involve maintaining
the physical location of the files, they might provide access to data on a file server by acting as
clients for a network protocol (e.g., NFS, SMB, or 9P clients), or they may be virtual and exist
only as an access method for virtual data.

More formally, a file system is a set of abstract data types that are implemented for the
storage, hierarchical organization, manipulation, navigation, access, and retrieval of data. File
systems share much in common with database technology, but it is debatable whether a file

system can be classified as a special-purpose database (DBMS).

Functions of file systems

The most familiar file systems make use of an underlying data storage device that offers
access to an array of fixed-size blocks, sometimes called sectors, generally 512 bytes each. The
file system software is responsible for organizing these sectors into files and directories, and

keeping track of which sectors belong to which file and which are not being used.

However, file systems need not make use of a storage device at all. A file system can be

used to organize and represent access to any data, whether it be stored or dynamically generated
(eg, from a network connection).
Whether the file system has an underlying storage device or not, file systems typically have
directories which associate file names with files, usually by connecting the file name to an index
into a file allocation table of some sort, such as the FAT in an MS-DOS file system, or an inode
in a Unix-like file system. Directory structures may be flat, or allow hierarchies where directories
may contain subdirectories. In some file systems, file names are structured, with special syntax
for filename extensions and version numbers. In others, file names are simple strings, and per-
file metadata is stored elsewhere.

Other bookkeeping information is typically associated with each file within a file system.
The length of the data contained in a file may be stored as the number of blocks allocated for the
file or as an exact byte count. The time that the file was last modified may be stored as the file's
timestamp. Some file systems also store the file creation time, the time it was last accessed, and
the time that the file's meta-data was changed. (Note that many early PC operating systems did
not keep track of file times.) Other information can include the file's device type (e.g., block,
character, socket, subdirectory, etc.), its owner user-1D and group-ID, and its access permission
settings (e.g., whether the file is read-only, executable, etc.).

The hierarchical file system was an early research interest of Dennis Ritchie of Unix
fame; previous implementations were restricted to only a few levels, notably the IBM
implementations, even of their early databases like IMS. After the success of Unix, Ritchie
extended the file system concept to every object in his later operating system developments, such
as Plan 9 and Inferno.

Traditional file systems offer facilities to create, move and delete both files and
directories. They lack facilities to create additional links to a directory (hard links in Unix),
rename parent links (".." in Unix-like OS), and create bidirectional links to files.Traditional file
systems also offer facilities to truncate, append to, create, move, delete and in-place modify files.
They do not offer facilities to prepend to or truncate from the beginning of a file, let alone
arbitrary insertion into or deletion from a file. The operations provided are highly asymmetric

and lack the generality to be useful in unexpected contexts.

For example, interprocess pipes in Unix have to be implemented outside of the file
system because the pipes concept does not offer truncation from the beginning of files.Secure
access to basic file system operations can be based on a scheme of access control lists or
capabilities. Research has shown access control lists to be difficult to secure properly, which is
why research operating systems tend to use capabilities. Commercial file systems still use access
control lists.

Arbitrary attributes can be associated on advanced file systems, such as XFS, xt2/ext3,
some versions of UFS, and HFS+, using extended file attributes. This feature is implemented in
the kernels of Linux, FreeBSD and Mac OS X operating systems, and allows metadata to be
associated with the file at the file system level. This, for example, could be the author of a
document, the character encoding of a plain-text document, or a checksum.

TYPES OF FILE SYSTEMS

File system types can be classified into disk file systems, network file systems and
special purpose file systems.
Disk file systems

A disk file system is a file system designed for the storage of files on a data storage
device, most commonly a disk drive, which might be directly or indirectly connected to the
computer. Examples of disk file systems include FAT, FAT32, NTFS, HFS and HFS+, ext2,
ext3, 1ISO 9660, ODS-5, and UDF. Some disk file systems are journaling file systems or
versioning file systems.
1.4.2 Flash file systems

A flash file system is a file system designed for storing files on flash memory devices.
These are becoming more prevalent as the number of mobile devices is increasing, and the
capacity of flash memories catches up with hard drives.

While a block device layer can run emulate hard drive behavior and store regular file
systems on a flash device, this is suboptimal for several reasons:
Erasing blocks: Flash memory blocks have to be explicitly erased before they can be written to.
The time taken to erase blocks can be significant, thus it is beneficial to erase unused blocks

while the device is idle.

Random access: Disk file systems are optimized to avoid disk seeks whenever possible, due to
the high cost of seeking. Flash memory devices impose no seek latency.

Wear levelling: Flash memory devices tend to "wear out” when a single block is repeatedly
overwritten; flash file systems try to spread out writes as evenly as possible.

It turns out that log-structured file systems have all the desirable properties for a flash file
system. Such file systems include JFFS2 and Y AFFS.

Database file systems

A new concept for file management is the concept of a database-based file system.
Instead of, or in addition to, hierarchical structured management, files are identified by their
characteristics, like type of file, topic, author, or similar metadata.

Transactional file systems

This is a special kind of file system in that it logs events or transactions to files. Each
operation that you do may involve changes to a number of different files and disk structures. In
many cases, these changes are related, meaning that it is important that they all be executed at
the same time. Take for example a bank sending another bank some money electronically. The
bank's computer will "send" the transfer instruction to the other bank and also update its own
records to indicate the transfer has occurred. If for some reason the computer crashes before it
has had a chance to update its own records, then on reset, there will be no record of the transfer
but the bank will be missing some money.

A transactional system can rebuild the actions by resynchronizing the "transactions” on
both ends to correct the failure. All transactions can be saved as well, providing a complete
record of what was done and where. This type of file system is designed and intended to be fault
tolerant, and necessarily incurs a high degree of overhead.

Network file systems

A network file system is a file system that acts as a client for a remote file access
protocol, providing access to files on a server. Examples of network file systems include clients
for the NFS, SMB protocols, and file-system-like clients for FTP and WebDAV.

1.4.6 Special purpose file systems
A special purpose file system is basically any file system that is not a disk file system or

network file system. This includes systems where the files are arranged dynamically by software,

intended for such purposes as communication between computer processes or temporary file
space.

Special purpose file systems are most commonly used by file-centric operating systems
such as Unix. Examples include the procfs (/proc) file system used by some Unix variants,
which grants access to information about processes and other operating system features. Deep
space science exploration craft, like Voyager | & Il used digital tape based special file systems.
Most modern space exploration craft like Cassini-Huygens used Real-time operating system file
systems or RTOS influenced file systems. The Mars Rovers are one such example of an RTOS
file system, important in this case because they are implemented in flash memory.

Flat file systems

In a flat file system, there are no subdirectories—everything is stored at the same (root)
level on the media, be it a hard disk, floppy disk, etc. While simple, this system rapidly becomes
inefficient as the number of files grows, and makes it difficult for users to organise data into
related groups.

Like many small systems before it, the original Apple Macintosh featured a flat file
system, called Macintosh File System. Its version of Mac OS was unusual in that the file
management software (Macintosh Finder) created the illusion of a partially hierarchical filing
system on top of MFS. This structure meant that every file on a disk had to have a unique name,
even if it appeared to be in a separate folder. MFS was quickly replaced with Hierarchical File
System, which supported real directories.

File systems and operating systems

Most operating systems provide a file system, and is an integral part of any modern
operating system. Early microcomputer operating systems' only real task was file management
— a fact reflected in their names (see DOS). Some early operating systems had a separate
component for handling file systems which was called a disk operating system. On some
microcomputers, the disk operating system was loaded separately from the rest of the operating
system. On early operating systems, there was usually support for only one, native,
unnamed file system; for example, CP/M supports only its own file system, which might be

called "CP/M file system™ if needed, but which didn't bear any official name at all.
FILE ORGANIZATION

1. Afile is organized logically as a sequence of records.

2. Records are mapped onto disk blocks.

3. Files are provided as a basic construct in operating systems, so we assume the

existence of an underlying file system.

4. Blocks are of a fixed size determined by the operating system.

5. Record sizes vary.

6. In relational database, tuples of distinct relations may be of different sizes.

7. One approach to mapping database to files is to store records of one length in a given file.
8. An alternative is to structure files to accommodate variable-length records. (Fixedlength

IS easier to implement.)

ALLOCATING AND FREEZING SPACE

Free Space Management

To keep track of the free space, the file system maintains a free space list which records
all disk blocks which are free. We search the free space list to create a file for the required
amount of space and allocate it to the new file. This space is then removed from the free space
list. When a file is deleted, its disk space is added to the free space list.

Bit-Vector

Frequently, the free-space list is implemented as a bit map or bit vector. Each block is
represented by a 1 bit. If the block is free, the bit is O; if the block is allocated, the bit is 1. For
example, consider a disk where blocks 2, 3, 4,5, 8,9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 are
free, and the rest of the blocks are allocated. The free-space bit map would be:
11000011000000111001111110001111...

The main advantage of this approach is that it is relatively simple and efficient to find n
consecutive free blocks on the disk. Unfortunately, bit vectors are inefficient unless the
entirevector is kept in memory for most accesses. Keeping it main memory is possible for
smaller disks such as on microcomputers, but not for larger ones.

Linked List
Grouping

A modification of the free-list approach is to store the addresses of n free blocks in the

first free block. The first n-1 of these are actually free. The last one is the disk address of

another block containing addresses of another n free blocks. The importance of this

implementation is that addresses of a large number of free blocks can be found quickly.

Counting

Another approach is to take advantage of the fact that, generally, several contiguous
blocks may be allocated or freed simultaneously, particularly when contiguous allocation is used.
Thus, rather than keeping a list of free disk addresses, the address of the first free block is kept
and the number n of free contiguous blocks that follow the first block. Each entry in the free-
space list then consists of a disk address and a count. Although each entry requires more space
than would a simple disk address, the overall list will be shorter, as long as the count is generally
greater than 1.

Contiguous allocation

The contiguous allocation method requires each file to occupy a set of contiguous address
on the disk. Disk addresses define a linear ordering on the disk. Notice that, with this ordering,
accessing block b+1 after block b normally requires no head movement. When head movement
is needed (from the last sector of one cylinder to the first sector of the next cylinder), it is only
one track. Thus, the number of disk seeks required for accessing contiguous allocated files in
minimal, as is seek time when a seek is finally needed.Contiguous allocation of a file is defined
by the disk address and the length of the first block.

If the file is n blocks long, and starts at location b, then it occupies blocks b, b+1, b+2, ...,
b+n-1. The directory entry for each file indicates the address of the starting block and the
length of the area allocated for this file.

The difficulty with contiguous allocation is finding space for a new file. If the file to be
created is n blocks long, then the OS must search for n free contiguous blocks. First-fit, bestfit,
and worst-fit strategies (as discussed in Chapter 4 on multiple partition allocation) are the most
common strategies used to select a free hole from the set of available holes. Simulations have
shown that both first-fit and best-fit are better than worst-fit in terms of both time storage
utilization. Neither first-fit nor best-fit is clearly best in terms of storage utilization, but first-fit is
generally faster.

These algorithms also suffer from external fragmentation. As files are allocated and
deleted, the free disk space is broken into little pieces. External fragmentation exists when

enough total disk space exists to satisfy a request, but this space not contiguous; storage is

fragmented into a large number of small holes.
Linked allocation

The problems in contiguous allocation can be traced directly to the requirement that the
spaces be allocated contiguously and that the files that need these spaces are of different sizes.
These requirements can be avoided by using linked allocation.

In linked allocation, each file is a linked list of disk blocks. The directory contains a
pointer to the first and (optionally the last) block of the file. For example, a file of 5 block which
starts at block 4, might continue at block 7, then block 16, block 10, and finally block 27. Each
block contains a pointer to the next block and the last block contains a NIL pointer.

The value -1 may be used for NIL to differentiate it from block 0.
Indexed allocation

The indexed allocation method is the solution to the problem of both contiguous and
linked allocation. This is done by bringing all the pointers together into one location called
the index block. Of course, the index block will occupy some space and thus could be considered
as an overhead of the method. In indexed allocation, each file has its own index block, which is
an array of disk sector of addresses. The ith entry in the index block points to the ith sector of the
file. The directory contains the address of the index block of a file. To read the ith sector of the
file, the pointer in the ith index block entry is read to find the desired
sector. Indexed allocation supports direct access, without suffering from external fragmentation.
Any free block anywhere on the disk may satisfy a request for more space.

FILE DESCRIPTORS AND ACCESS CONTROL

Aims and Objectives
In this lesson we will learn about the file descriptors and access control.
The objectives of this lesson is to make the candidate aware of the following
a) file descriptors
b) operations on file descriptor
a. creating
b. deriving
c. modifying, etc.

c) access control matrix

Introduction

A file descriptor or file control block is a control block containing information the system
needs to manage a file. The file descriptor is controlled by the operating system and is brought to
the primary storage when a file is opened. A file descriptor contains information regarding (i)
symbolic file name, (ii) location of file, (iii) file organization
(sequential, indexed, etc.), (iv) device type, (v) access control data, (vi) type (data file, object
program, C source program, etc.), (vii) disposition (temporary or permanent), (viii) date and
time of creation, (ix) destroy date, (x) last modified date and time, (xi) access activity counts
(number of reads, etc.).
File descriptor in programming

In computer programming, a file descriptor is an abstract key for accessing a file.
The term is generally used in POSIX operating systems. In Microsoft Windows terminology
and in the context of the C standard 1/O library, "file handle™ is preferred, though the latter
case is technically a different object (see below).
In POSIX, a file descriptor is an integer, specifically of the C type int. There are 3
standard POSIX file descriptors which presumably every process (save perhaps a daemon)
should expect to have:
Integer value Name
0 Standard Input (stdin)
1 Standard Output (stdout)
2 Standard Error (stderr)
Generally, a file descriptor is an index for an entry in a kernel-resident data structure containing
the details of all open files. In POSIX this data structure is called a file descriptor table, and each
process has its own file descriptor table. The user application passes the abstract key to the
kernel through a system call, and the kernel will access the file on behalf of the application,
based on the key. The application itself cannot read or write the file descriptor table directly. In
Unix-like systems, file descriptors can refer to files, directories, block or character devices (also
called "special files"), sockets, FIFOs (also called named pipes), or unnamed pipes.

The FILE * file handle in the C standard 1/O library routines is technically a pointer to a

data structure managed by those library routines; one of those structures usually includes an

actual low level file descriptor for the object in question on Unix-like systems. Since file handle
refers to this additional layer, it is not interchangeable with file descriptor.

To further complicate terminology, Microsoft Windows also uses the term file handle to refer to
the more low-level construct, akin to POSIX's file descriptors. Microsoft's C libraries also
provide compatibility functions which "wrap™ these native handles to support the POSIX-like
convention of integer file descriptors as detailed above.

A program is passed a set of “open file descriptors”, that is, pre-opened files. A
setuid/setgid program must deal with the fact that the user gets to select what files are open and
to what (within their permission limits). A setuid/setgid program must not assume that opening a
new file will always open into a fixed file descriptor id, or that the open will succeed at all. It
must also not assume that standard input (stdin), standard output (stdout), and standard error

(stderr) refer to a terminal or are even open.
OPERATIONS ON FILE DESCRIPTORS

A modern Unix typically provides the following operations on file descriptors.
Creating file descriptors

open(), open64(), creat(), creat64()

socket()

socketpair()

pipe()

Deriving file descriptors

fileno()

dirfd()

Operations on a single file descriptor

read(), write()

recv(), send()

recvmsg(), sendmsg() (inc. allowing sending FDs)
sendfile()

Iseek(), Iseek64()

fstat(), fstat64()

fchmod()

fchown()

fdopen()

gzdopen()

ftruncate()

15.4.4 Operations on multiple file descriptors

select(), pselect()

poll(), epoll()

Operations on the file descriptor table

close()

dup()

dup2()

fcntl (F_DUPFD)

fcntl (F_GETFD and F_SETFD)

Operations that modify process state

fchdir(): sets the process's current working directory based on a directory file
descriptor

mmap(): maps ranges of a file into the process's address space
File locking

flock()

fentl (F_GETLK, F_SETLK and F_SETLKW)

lockf()

Sockets

connect()

bind()

listen()

accept(): creates a new file descriptor for an incoming connection
getsockname()

getpeername()

getsockopt(), setsockopt()

shutdown(): shuts down one or both halves of a full duplex connection

Reference :

1. LelandL.Beck,System Software:An Introduction to Systems Programming,Pearson, Third
Edition.
2. 2 H.M.Deitel,Operating Systems, 2nd Edition,Perason, 2003.

Prepared by :
M.Balasubramaniyam,

Assistant Professor,

Department of BCA,

Vidyasagar College of arts and science,
Udumalpet.

Reference Website :

www.studoc.com

	Introduction
	System Software and Machine Architecture
	Assembler Design
	Basic Assembler Functions:
	Single-pass Assembler:
	Pass-1
	Pass-2

	Assembler Design:
	Example Program:
	Object code for the example program:
	Machine-Dependent Features:
	Instruction formats and Addressing Modes
	1. Translations for the Instruction involving Register-Register addressing mode:
	4. Immediate Addressing Mode
	5. Indirect and PC-relative mode:

	Absolute Program
	3.2.5 Control Sections:
	secname CSECT
	Handling External Reference Case 1
	Case 2
	Case 3
	Object Code for the example program:
	Handling Expressions in Multiple Control Sections:
	 How to enforce this restriction
	ASSEMBLER DESIGN
	One-Pass Assembler
	Load-and-Go Assembler

	40 2021 J` CLOOP 302012
	If One-Pass needs to generate object code:
	Multi_Pass Assembler:
	Implementation Issues for Modified Two-Pass Assembler:
	Loaders and Linkers
	Basic Loader Functions
	Type of Loaders
	Absolute Loader
	Figure 3.3.1: The Role of Absolute Loader
	Begin
	end
	end (1)
	Begin (1)
	Loop
	Machine-Dependent Loader Features
	Relocation
	Methods for specifying relocation
	Program Linking
	How to implement EXTDEF and EXTREF
	Define record

	D LISTA 000040 ENDA 000054
	Refer record

	R LISTB ENDB LISTC ENDC R LISTA ENDA LISTC ENDC R LISTA ENDA LISTB ENDB
	D LISTA 000040 ENDA 000054 R LISTB ENDB LISTC ENDC
	D LISTB 000060 ENDB 000070 R LISTA ENDA LISTC ENDC
	D LISTC 000030 ENDC 000042 R LISTA ENDA LISTB ENDB
	Algorithm and Data structures for a Linking Loader
	Program Logic for Pass 1
	Program Logic for Pass 2

	SYSTEM SOFTWARE AND OPERATING SYSTEMS
	MACHINE DEPENDANT COMPILER FEATURES:
	Introduction:
	Definition for compiler:
	Basic compiler function:
	Grammar:
	Lexical analysis:
	Syntactical analysis (or) parsing:
	Code generation:
	Basis steps to be followed in the compilation process:
	Intermediate form of the program:
	Quadruples:
	Form of Quadruples:
	For Example: 1
	Example: 2
	Machine dependent code optimization:
	Basic blocks:
	Rearrangement of Quadruples for code optimization:
	Figure: rearrangement for Quadruples for code optimization

	MACHINE INDEPENDENT FEATURES
	Machine independent compiler features:
	Structure variable:
	(A) in row major order
	B) In column major order:

	(A)
	ii. Storage allocation:
	allocation.
	Block structured languages:

	FIGURE (A)
	COMPILER DESIGN OPTIONS
	Introduction:
	Division into passes:
	Interpreters:
	Advantages interpreters
	P-code compilers:[byte code compiler]:
	Translation and execution using a p- code compiler:
	Advantages of p-code compiler:
	Design of pseudo-machine (or) p-code machine
	Compiler-compilers
	Advantages of compiler – compilers

	OPERATING SYSTEM
	PROCESS- DEFINITIONS OF PROCESS
	PROCESS STATES
	PROCESS STATE TRANSITIONS
	New to Ready
	Ready to Running
	dispatch (process name): ready->running Running to Terminated
	Running to Ready
	timerrunout (process name): running->ready
	Running to Waiting
	Waiting to Ready
	Running to Block
	block (process name): running->blocked
	wakeup (process name): blocked->ready INTERRUPT
	Difference between polling and interrupts
	Interrupt processing
	Interrupt classes
	SVC (Supervisor call) interrupts
	I/O interrupts
	External interrupts
	Restart interrupts
	Program check interrupts
	Machine check interrupts

	STORAGE MANAGEMENT
	Storage Hierarchy
	Storage management strategies
	Fetch strategies
	Placement strategies
	Replacement strategies

	DEFINITION OF CONTIGUOUS MEMORY ALLOCATION
	DEFINITION NON-CONTIGUOUS MEMORY ALLOCATION
	SINGLE USER CONTIGUOUS STORAGE ALLOCATION
	Advantages and Disadvantages of Single Contiguous Allocation Advantages
	Disadvantages

	OVERLAYS
	Overlay Structure
	Protection in a Single-User System
	Boundary register
	Single-Stream Batch Processing

	REAL MEMORY MANAGEMENT TECHNIQUES
	Fixed partition multiprogramming
	Advantage of Multiprogramming
	Fixed Partition Multiprogramming: Absolute Translation and Loading
	Fixed partition multiprogramming: relocatable translation and loading
	Protection in multiprogramming systems
	Fragmentation in fixed partition multiprogramming

	VARIABLE PARTITION MULTIPROGRAMMING
	Variable partition multiprogramming characteristics
	Coalescing holes
	Storage compaction
	Storage placement strategies
	2. First fit strategy
	3. Worst fit strategy
	First fit strategy
	Best fit strategy
	Worst fit strategy
	Unit –IV

	VIRTUAL STORAGE
	Virtual storage management strategies
	Page replacement algorithms

	FIFO
	Optimal replacement
	Least recently used
	Working sets
	Demand paging
	Page size

	PROCESSOR MANAGEMENT:
	Introduction:
	Preemptive Vs Non-Preemptive
	Priorities
	Deadline scheduling

	UNIT –V
	DEVICE AND DISK MANAGEMENT
	Introduction
	Need for Disk Scheduling

	FILE SYSTEMS AND ORGANIZATION
	Functions of file systems
	Disk file systems
	1.4.2 Flash file systems
	Database file systems
	Transactional file systems
	Network file systems
	1.4.6 Special purpose file systems
	Flat file systems
	File systems and operating systems

	ALLOCATING AND FREEZING SPACE
	Free Space Management
	Bit-Vector
	Linked List Grouping
	Counting
	Contiguous allocation
	Linked allocation
	Indexed allocation

	FILE DESCRIPTORS AND ACCESS CONTROL
	Aims and Objectives
	Introduction
	File descriptor in programming
	Integer value Name
	Creating file descriptors
	Deriving file descriptors
	Operations on a single file descriptor
	15.4.4 Operations on multiple file descriptors
	Operations on the file descriptor table
	Operations that modify process state
	File locking

