
 

     UNIT – 1 

 SYLLABUS 

Introduction –System Software and machine architecture. Loader and Linkers: Basic Loader 

Functions - Machine dependent loader features –Machine independent loader features - Loader 

design options. 

Introduction 

 

The subject introduces the design and implementation of system software. Software is set 

of instructions or programs written to carry out certain task on digital computers. It is classified 

into system software and application software. System software consists of a variety of programs 

that support the operation of a computer. Application software focuses on an application or 

problem to be solved. System software consists of a variety of programs that support the 

operation of a computer. Examples for system software are Operating system, compiler, 

assembler, macro processor, loader or linker, debugger, text editor, database management 

systems (some of them) and, software engineering tools. These software’s make it possible for 

the user to focus on an application or other problem to be solved, without needing to know the 

details of how the machine works internally. 

System Software and Machine Architecture 

 

One characteristic in which most system software differs from application software is 

machine dependency. 

System software – support operation and use of computer. Application software - 

solution to a problem. Assembler translates mnemonic instructions into machine code. The 

instruction formats, addressing modes etc., are of direct concern in assembler design. Similarly, 

Compilers  must  generate  machine  language  code,  taking  into  account  such  hardware 



 

characteristics as the number and type of registers and the machine instructions available. 

Operating systems are directly concerned with the management of nearly all of the resources of a 

computing system. 

There are aspects of system software that do not directly depend upon the type of 

computing system, general design and logic of an assembler, general design and logic of a 

compiler and, code optimization techniques, which are independent of target machines. 

Likewise, the process of linking together independently assembled subprograms does not usually 

depend on the computer being used. 

 

 

Assembler Design 

 

Assembler is system software which is used to convert an assembly language program to its 

equivalent object code. The input to the assembler is a source code written in assembly language 

(using mnemonics) and the output is the object code. The design of an assembler depends upon 

the machine architecture as the language used is mnemonic language. 

 

 

 

 

Basic Assembler Functions: 

The basic assembler functions are: 

 Translating mnemonic language code to its equivalent object code. 

 Assigning machine addresses to symbolic labels. 
 

 

 



 

• The design of assembler can be to perform the following: 

– Scanning (tokenizing) 

– Parsing (validating the instructions) 

– Creating the symbol table 

– Resolving the forward references 

– Converting into the machine language 

• The design of assembler in other words: 

– Convert mnemonic operation codes to their machine language equivalents 

– Convert symbolic operands to their equivalent machine addresses 

– Decide the proper instruction format Convert the data constants to internal machine 

representations 

– Write the object program and the assembly listing 

So for the design of the assembler we need to concentrate on the machine architecture of the 

SIC/XE machine. We need to identify the algorithms and the various data structures to be used. 

According to the above required steps for assembling the assembler also has to handle assembler 

directives, these do not generate the object code but directs the assembler to perform certain 

operation. These directives are: 

• SIC Assembler Directive: 

– START: Specify name & starting address. 

– END: End of the program, specify the first execution instruction. 

– BYTE, WORD, RESB, RESW 

– End of record: a null char(00) 

End of file: a zero length record 

The assembler design can be done: 

 Single pass assembler 

 Multi-pass assembler 

Single-pass Assembler: 



 

In this case the whole process of scanning, parsing, and object code conversion is done in 

single pass. The only problem with this method is resolving forward reference. This is shown 

with an example below: 

 

10 1000 FIRST STL RETADR 141033 

-- 
   

-- 
   

-- 
   

-- 
   

95 1033 RETADR RESW 1 

In the above example in line number 10 the instruction STL will store the linkage register 

with the contents of RETADR. But during the processing of this instruction the value of this 

symbol is not known as it is defined at the line number 95. Since I single-pass assembler the 

scanning, parsing and object code conversion happens simultaneously. The instruction is fetched; 

it is scanned for tokens, parsed for syntax and semantic validity. If it valid then it has to be 

converted to its equivalent object code. For this the object code is generated for the opcode STL 

and the value for the symbol RETADR need to be added, which is not available. 

Due to this reason usually the design is done in two passes. So a multi-pass assembler 

resolves the forward references and then converts into the object code. Hence the process of the 

multi-pass assembler can be as follows: 

 

 

 

 

Pass-1 

 Assign addresses to all the statements 

 Save the addresses assigned to all labels to be used in Pass-2 

 Perform some processing of assembler directives such as RESW, RESB to find the length 

of data areas for assigning the address values. 

 Defines the symbols in the symbol table(generate the symbol table) 

Pass-2 



 

 Assemble the instructions (translating operation codes and looking up addresses). 

 Generate data values defined by BYTE, WORD etc. 

 Perform the processing of the assembler directives not done during pass-1. 

 Write the object program and assembler listing. 

Assembler Design: 

The most important things which need to be concentrated is the generation of Symbol table 

and resolving forward references. 

• Symbol Table: 

– This is created during pass 1 

– All the labels of the instructions are symbols 

– Table has entry for symbol name, address value. 

• Forward reference: 

– Symbols that are defined in the later part of the program are called forward 

referencing. 

– There will not be any address value for such symbols in the symbol table in pass 

1. 

Example Program: 

The example program considered here has a main module, two subroutines 

• Purpose of example program 

- Reads records from input device (code F1) 

- Copies them to output device (code 05) 

- At the end of the file, writes EOF on the output device, then RSUB to the 

operating system 

• Data transfer (RD, WD) 

-A buffer is used to store record 

-Buffering is necessary for different I/O rates 

-The end of each record is marked with a null character (00)16 

-The end of the file is indicated by a zero-length record 



 

 Subroutines (JSUB, RSUB) 

-RDREC, WRREC 

-Save link register first before nested jump 
 

 

 

 

The first column shows the line number for that instruction, second column shows the addresses 

allocated to each instruction. The third column indicates the labels given to the statement, and is 

followed by the instruction consisting of opcode and operand. The last column gives the 

equivalent object code. 

The object code later will be loaded into memory for execution. The simple object program 

we use contains three types of records: 



 

• Header record 

- Col. 1 H 

- Col. 2~7 Program name 

- Col. 8~13 Starting address of object program (hex) 

- Col. 14~19 Length of object program in bytes (hex) 

• Text record 

- Col. 1 T 

- Col. 2~7 Starting address for object code in this record (hex) 

- Col. 8~9 Length of object code in this record in bytes (hex) 

- Col. 10~69 Object code, represented in hex (2 col. per byte) 

• End record 

- Col.1 E 

- Col.2~7 Address of first executable instruction in object program (hex) “^” is only for 

separation only 

Object code for the example program: 

Some of the features in the program depend on the architecture of the machine. If the program is 

for SIC machine, then we have only limited instruction formats and hence limited addressing 

modes. We have only single operand instructions. The operand is always a memory reference. 

Anything to be fetched from memory requires more time. Hence the improved version of 

SIC/XE machine provides more instruction formats and hence more addressing modes. The 

moment we change the machine architecture the availability of number of instruction formats 

and the addressing modes changes. Therefore the design usually requires considering two things: 

Machine-dependent features and Machine-independent features. 

 

 

Machine-Dependent Features: 

 Instruction formats and addressing modes 

 Program relocation 

 

Instruction formats and Addressing Modes 



 

The instruction formats depend on the memory organization and the size of the memory. In 

SIC machine the memory is byte addressable. Word size is 3 bytes. So the size of the memory is 

212 bytes. Accordingly it supports only one instruction format. It has only two registers: register 

A and Index register. Therefore the addressing modes supported by this architecture are direct, 

indirect, and indexed. Whereas the memory of a SIC/XE machine is 220 bytes (1 MB). This 

supports four different types of instruction types, they are: 

 1 byte instruction 

 2 byte instruction 

 3 byte instruction 

 4 byte instruction 

• Instructions can be: 

– Instructions involving register to register 

– Instructions with one operand in memory, the other in Accumulator (Single 

operand instruction) 

– Extended instruction format 

• Addressing Modes are: 

– Index Addressing(SIC): Opcode m, x 

– Indirect Addressing: Opcode @m 

– PC-relative: Opcode m 

– Base relative: Opcode m 

– Immediate addressing: Opcode #c 

 

 

1. Translations for the Instruction involving Register-Register addressing mode: 

During pass 1 the registers can be entered as part of the symbol table itself. The value for these 

registers is their equivalent numeric codes. During pass 2, these values are assembled along with 

the mnemonics object code. If required a separate table can be created with the register names 

and their equivalent numeric values. 

2. Translation involving Register-Memory instructions: 



 

In SIC/XE machine there are four instruction formats and five addressing modes. For formats 

and addressing modes refer chapter 1. 

Among the instruction formats, format -3 and format-4 instructions are Register-Memory 

type of instruction. One of the operand is always in a register and the other operand is in the 

memory. The addressing mode tells us the way in which the operand from the memory is to be 

fetched. 

There are two ways: Program-counter relative and Base-relative. This addressing mode can 

be represented by either using format-3 type or format-4 type of instruction format. In format-3, 

the instruction has the opcode followed by a 12-bit displacement value in the address field. 

Where as in format-4 the instruction contains the mnemonic code followed by a 20-bit 

displacement value in the address field. 

2. Program-Counter Relative: In this usually format-3 instruction format is used. The instruction 

contains the opcode followed by a 12-bit displacement value. The range of displacement values 

are from 0 -2048. This displacement (should be small enough to fit in a 12-bit field) value is 

added to the current contents of the program counter to get the target address of the operand 

required by the instruction. This is relative way of calculating the address of the operand relative 

to the program counter. Hence the displacement of the operand is relative to the current program 

counter value. The following example shows how the address is calculated: 

 

3. Base-Relative Addressing Mode: in this mode the base register is used to mention the 

displacement value. Therefore the target address is 

TA = (base) + displacement value 

 

This addressing mode is used when the range of displacement value is not sufficient. Hence the 

operand is not relative to the instruction as in PC-relative addressing mode. Whenever this mode 

is used it is indicated by using a directive BASE. The moment the assembler encounters this 

directive the next instruction uses base-relative addressing mode to calculate the target address of 

the operand. 

When NOBASE directive is used then it indicates the base register is no more used to calculate 

the target address of the operand. Assembler first chooses PC-relative, when the displacement 

field is not enough it uses Base-relative. 

 



 

 

 

 

 

 

 

 

 

 

 

For example: 
 

12 0003 LDB #LENGTH  69202D 

13 
 

BASE LENGTH 
  

: : 
     

100 0033 LENGTH RESW 1 
 

105 0036 BUFFER RESB 4096 
 

: : 
     

160 104E STCH BUFFER, X 57C003 

165 1051 TIXR T B850  

In the above example the use of directive BASE indicates that Base-relative addressing mode 

is to be used to calculate the target address. PC-relative is no longer used. The value of the 

LENGTH is stored in the base register. If PC-relative is used then the target address calculated 

is: 

The LDB instruction loads the value of length in the base register which 0033. BASE 

directive explicitly tells the assembler that it has the value of LENGTH. 

 

BUFFER is at location (0036)16 

(B) = (0033)16 

disp = 0036 – 0033 = (0003)16 

 

 

 

 

20 000A LDA LENGTH 032026 

 

LDB #LENGTH (instruction) BASE 

LENGTH (directive) 

: NOBASE 



 

: : 
    

175 1056 EXIT STX LENGTH 134000 

 

 

Consider Line 175. If we use PC-relative 

 

 

Disp = TA – (PC) = 0033 –1059 = EFDA 

 

 

PC relative is no longer applicable, so we try to use BASE relative addressing mode. 

 

4. Immediate Addressing Mode 

 

In this mode no memory reference is involved. If immediate mode is used the target address is 

the operand itself. 

If the symbol is referred in the instruction as the immediate operand then it is immediate with 

PC-relative mode as shown in the example below: 

5. Indirect and PC-relative mode: 

 

In this type of instruction the symbol used in the instruction is the address of the location which 

contains the address of the operand. The address of this is found using PC-relative addressing 

mode. 

 

The instruction jumps the control to the address location RETADR which in turn has the address 

of the operand. If address of RETADR is 0030, the target address is then 0003 as calculated 

above. 

3.2 Program Relocation 

 

Sometimes it is required to load and run several programs at the same time. The system must be 

able to load these programs wherever there is place in the memory. Therefore the exact starting 

is not known until the load time. 

 

 

Absolute Program 

 

In this the address is mentioned during assembling itself. This is called Absolute Assembly. 



 

Consider the instruction: 

 

55   101B LDA THREE 00102D 

 

This statement says that the register A is loaded with the value stored at location 102D. 

Suppose it is decided to load and execute the program at location 2000 instead of location 1000. 

Then at address 102D the required value which needs to be loaded in the register A is no more 

available. The address also gets changed relative to the displacement of the program. Hence we 

need to make some changes in the address portion of the instruction so that we can load and 

execute the program at location 2000. Apart from the instruction which will undergo a change in 

their operand address value as the program load address changes. There exist some parts in the 

program which will remain same regardless of where the program is being loaded. 

Since assembler will not know actual location where the program will get loaded, it cannot 

make the necessary changes in the addresses used in the program. However, the assembler 

identifies for the loader those parts of the program which need modification. An object program 

that has the information necessary to perform this kind of modification is called the relocatable 

program. 

3.2.5 Control Sections: 

 

A control section is a part of the program that maintains its identity after assembly; each 

control section can be loaded and relocated independently of the others. Different control 

sections are most often used for subroutines or other logical subdivisions. The programmer can 

assemble, load, and manipulate each of these control sections separately. 

Because of this, there should be some means for linking control sections together. For 

example, instructions in one control section may refer to the data or instructions of other control 

sections. Since control sections are independently loaded and relocated, the assembler is unable 

to process these references in the usual way. Such references between different control sections 

are called external references. 

The assembler generates the information about each of the external references that will 

allow the loader to perform the required linking. When a program is written using multiple 

control sections, the beginning of each of the control section is indicated by an assembler 

directive 

– assembler directive: CSECT 



 

The syntax 

secname CSECT 

 

– separate location counter for each control section 

 

 

 

Control sections differ from program blocks in that they are handled separately by the assembler. 

Symbols that are defined in one control section may not be used directly another control section; 

they must be identified as external reference for the loader to handle. The external references are 

indicated by two assembler directives: 

EXTDEF (external Definition): 

 

It is the statement in a control section, names symbols that are defined in this section but 

may be used by other control sections. Control section names do not need to be named in the 

EXTREF as they are automatically considered as external symbols. 

 

EXTREF (external Reference): 

 

It names symbols that are used in this section but are defined in some other control 

section. 

The order in which these symbols are listed is not significant. The assembler must include proper 

information about the external references in the object program that will cause the loader to 

insert the proper value where they are required. 

Handling External Reference 

Case 1 

15 0003 CLOOP +JSUB RDREC 4B100000 

 

 The operand RDREC is an external reference. 

 

o The assembler has no idea where RDREC is 

 

o inserts an address of zero 

 

o can only use extended format to provide enough room (that is, relative addressing 

for external reference is invalid) 



 

 The assembler generates information for each external reference that will allow the loader 

to perform the required linking. 

Case 2 

190 0028 MAXLEN WORD BUFEND-BUFFER 000000 

 There are two external references in the expression, BUFEND and BUFFER. 

 The assembler inserts a value of zero 

 passes information to the loader 

 Add to this data area the address of BUFEND 

 Subtract from this data area the address of BUFFER 

Case 3 

 

On line 107, BUFEND and BUFFER are defined in the same control section and the expression 

can be calculated immediately. 

107 1000  MAXLEN EQU BUFEND-BUFFER 

Object Code for the example program: 

The assembler must also include information in the object program that will cause the loader to 

insert the proper value where they are required. The assembler maintains two new record in the 

object code and a changed version of modification record. 

Define record (EXTDEF) 

 Col. 1 D 

 Col. 2-7 Name of external symbol defined in this control section 

 Col. 8-13 Relative address within this control section (hexadecimal) 

 Col.14-73 Repeat information in Col. 2-13 for other external symbols 

Refer record (EXTREF) 

 Col. 1 R 

 Col. 2-7 Name of external symbol referred to in this control section 

 Col. 8-73 Name of other external reference symbols 

Modification record 

 Col. 1 M 

 Col. 2-7 Starting address of the field to be modified (hexadecimal) 



 

 Col. 8-9 Length of the field to be modified, in half-bytes (hexadecimal) 

 Col.11-16 External symbol whose value is to be added to or subtracted from 

the indicated field 

A define record gives information about the external symbols that are defined in this control 

section, i.e., symbols named by EXTDEF. 

A refer record lists the symbols that are used as external references by the control section, i.e., 

symbols named by EXTREF. 

 

The new items in the modification record specify the modification to be performed: adding or 

subtracting the value of some external symbol. The symbol used for modification my be defined 

either in this control section or in another section. 

The object program is shown below. There is a separate object program for each of the 

control sections. In the Define Record and refer record the symbols named in EXTDEF and 

EXTREF are included. 

In the case of Define, the record also indicates the relative address of each external 

symbol within the control section. 

For EXTREF symbols, no address information is available. These symbols are simply 

named in the Refer record. 

 

 

Handling Expressions in Multiple Control Sections: 

The existence of multiple control sections that can be relocated independently of one 

another makes the handling of expressions complicated. It is required that in an expression that 

all the relative terms be paired (for absolute expression), or that all except one be paired (for 

relative expressions). 

When it comes in a program having multiple control sections then we have an extended 

restriction that: 

 Both terms in each pair of an expression must be within the same control section 

 

o If two terms represent relative locations within the same control section , their 

difference is an absolute value (regardless of where the control section is located. 



 

 Legal: BUFEND-BUFFER (both are in the same control section) 

 

 

 

o If the terms are located in different control sections, their difference has a value 

that is unpredictable. 

 

 Illegal: RDREC-COPY (both are of different control section) it is the 

difference in the load addresses of the two control sections. This value 

depends on the way run-time storage is allocated; it is unlikely to be of 

any use. 

 How to enforce this restriction 

 

o When an expression involves external references, the assembler cannot determine 

whether or not the expression is legal. 

o The assembler evaluates all of the terms it can, combines these to form an initial 

expression value, and generates Modification records. 

o The loader checks the expression for errors and finishes the evaluation. 

 

ASSEMBLER DESIGN 

 

Here we are discussing 

 

o The structure and logic of one-pass assembler. These assemblers are used when it is 

necessary or desirable to avoid a second pass over the source program. 

o Notion of a multi-pass assembler, an extension of two-pass assembler that allows an 

assembler to handle forward references during symbol definition. 

One-Pass Assembler 

 

The main problem in designing the assembler using single pass was to resolve forward 

references. We can avoid to some extent the forward references by: 

 Eliminating forward reference to data items, by defining all the storage reservation 

statements at the beginning of the program rather at the end. 

 Unfortunately, forward reference to labels on the instructions cannot be avoided. 



 

(forward jumping) 

 To provide some provision for handling forward references by prohibiting forward 

references to data items. 

 

There are two types of one-pass assemblers: 

 

 One that produces object code directly in memory for immediate execution (Load-and-go 

assemblers). 

 The other type produces the usual kind of object code for later execution. 

 

Load-and-Go Assembler 

 

 Load-and-go assembler generates their object code in memory for immediate execution. 

 

 No object program is written out, no loader is needed. 

 

 It is useful in a system with frequent program development and testing 

 

o The efficiency of the assembly process is an important consideration. 

 

 Programs are re-assembled nearly every time they are run; efficiency of the assembly 

process is an important consideration. 

Forward Reference in One-Pass Assemblers: In load-and-Go assemblers when a forward 

reference is encountered : 

 Omits the operand address if the symbol has not yet been defined 

 

 Enters this undefined symbol into SYMTAB and indicates that it is undefined 

 

 Adds the address of this operand address to a list of forward references associated with 

the SYMTAB entry 

 When the definition for the symbol is encountered, scans the reference list and inserts the 

address. 

 At the end of the program, reports the error if there are still SYMTAB entries indicated 

undefined symbols. 

 For Load-and-Go assembler 



 

o Search SYMTAB for the symbol named in the END statement and jumps to this 

location to begin execution if there is no error 

After Scanning line 40 of the program: 

 

40 2021 J` CLOOP 302012 

 

The status is that upto this point the symbol RREC is referred once at location 2013, ENDFIL at 

201F and WRREC at location 201C. None of these symbols are defined. The figure shows that 

how the pending definitions along with their addresses are included in the symbol table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If One-Pass needs to generate object code: 

 If the operand contains an undefined symbol, use 0 as the address and write the Text 

record to the object program. 

 Forward references are entered into lists as in the load-and-go assembler. 

 When the definition of a symbol is encountered, the assembler generates another Text 

record with the correct operand address of each entry in the reference list. 

 When loaded, the incorrect address 0 will be updated by the latter Text record containing 

the symbol definition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The status after scanning line 160, which has encountered the definition of RDREC and 

ENDFIL is as given below: 



 

Multi_Pass Assembler: 

 For a two pass assembler, forward references in symbol definition are not allowed: 

ALPHA EQU BETA 

BETA EQU DELTA 

DELTA RESW 1 

o Symbol definition must be completed in pass 1. 

 Prohibiting forward references in symbol definition is not a serious inconvenience. 

o Forward references tend to create difficulty for a person reading the program. 

Implementation Issues for Modified Two-Pass Assembler: 

Implementation Isuues when forward referencing is encountered in Symbol Defining statements 

: 

 For a forward reference in symbol definition, we store in the SYMTAB: 

o The symbol name 

o The defining expression 

o The number of undefined symbols in the defining expression 

 The undefined symbol (marked with a flag *) associated with a list of symbols depend on 

this undefined symbol. 

 

 

Loaders and Linkers 

This Chapter gives you… 

 Basic Loader Functions 

 Machine-Dependent Loader Features 

 Machine-Independent Loader Features 

 Loader Design Options 

 Implementation Examples  

 Introduction 

 

The Source Program written in assembly language or high level language will be 

converted to object program, which is in the machine language form for execution. This 



 

conversion either from assembler or from compiler, contains translated instructions and data 

values from the source program, or specifies addresses in primary memory where these items are 

to be loaded for execution. 

This contains the following three processes, and they are, 

 

Loading - which allocates memory location and brings the object program into memory 

for execution - (Loader) 

Linking- which combines two or more separate object programs and supplies the 

information needed to allow references between them - (Linker) 

Relocation - which modifies the object program so that it can be loaded at an address 

different from the location originally specified - (Linking Loader) 

Basic Loader Functions 

 

A loader is a system program that performs the loading function. It brings object program 

into memory and starts its execution. The role of loader is as shown in the figure 3.1. In figure 

3.1 translator may be assembler/complier, which generates the object program and later loaded to 

the memory by the loader for execution. In figure 3.2 the translator is specifically an assembler, 

which generates the object loaded, which becomes input to the loader. The figure 3.3 shows the 

role of both loader and linker. 

Type of Loaders 

 

The different types of loaders are, absolute loader, bootstrap loader, relocating loader 

(relative loader), and, direct linking loader. The following sections discuss the functions and 

design of all these types of loaders. 

 

 

Absolute Loader 

 

The operation of absolute loader is very simple. The object code is loaded to specified 

locations in the memory. At the end the loader jumps to the specified address to begin execution 

of the loaded program. The role of absolute loader is as shown in the figure 3.3.1. The advantage 

of absolute loader is simple and efficient. But the disadvantages are, the need for programmer to 

specify the actual address, and, difficult to use subroutine libraries. 

 



 

 

 

 

Object 

Program 

 
Absolute 

Loader 

1000 
 
 
 
 
 
 
 

 
2000 

 
 
 
 
 

 
Memory 

 

Figure 3.3.1: The Role of Absolute Loader 

The algorithm for this type of loader is given here. The object program and, the object 

program loaded into memory by the absolute loader are also shown. Each byte  of assembled 

code is given using its hexadecimal representation in character form. Easy to read by human 

beings. Each byte of object code is stored as a single byte. Most machine store object programs 

in a binary form, and we must be sure that our file and device conventions do not cause some of 

the program bytes to be interpreted as control characters. 

Begin 

read Header record 

verify program name and length 

read first Text record 

 

 

 

Object 

program 

ready for 

execution 



 

while record type is <> ‘E’ do 

begin 

{if object code is in character form, convert into internal representation} 

move object code to specified location in memory 

read next object program record 

end 

jump to address specified in End record 

end 

A Simple Bootstrap Loader 

 

When a computer is first turned on or restarted, a special type of absolute loader, called 

bootstrap loader is executed. This bootstrap loads the first program to be run by the computer -- 

usually an operating system. The bootstrap itself begins at address 0. It loads the OS starting 

address 0x80. No header record or control information, the object code is consecutive bytes of 

memory. 

The algorithm for the bootstrap loader is as follows 

 

Begin 

X=0x80 (the address of the next memory location to be loaded 

Loop 
 

 

 

 

 

 

 

 

 

 

 

 

 

End 

AGETC (and convert it from the ASCII character 

code to the value of the hexadecimal digit) 

save the value in the high-order 4 bits of S 

AGETC 

combine the value to form one byte A (A+S) 

store the value (in A) to the address in register X 

XX+1 

It uses a subroutine GETC, which is 



 

GETC Aread one character 

if A=0x04 then jump to 0x80 

if A<48 then GETC 

A  A-48 (0x30) 

if A<10 then return 

A  A-7 

return 

Machine-Dependent Loader Features 

 

Absolute loader is simple and efficient, but the scheme has potential disadvantages One 

of the most disadvantage is the programmer has to specify the actual starting address, from 

where the program to be loaded. This does not create difficulty, if one program to run, but not for 

several programs. Further it is difficult to use subroutine libraries efficiently. 

This needs the design and implementation of a more complex loader. The loader must 

provide program relocation and linking, as well as simple loading functions. 

Relocation 

 

The concept of program relocation is, the execution of the object program using any part 

of the available and sufficient memory. The object program is loaded into memory wherever 

there is room for it. The actual starting address of the object program is not known until load 

time. Relocation provides the efficient sharing of the machine with larger memory and when 

several independent programs are to be run together. It also supports the use of subroutine 

libraries efficiently. Loaders that allow for program relocation are called relocating loaders or 

relative loaders. 

Methods for specifying relocation 

Use of modification record and, use of relocation bit, are the methods available for 

specifying relocation. In the case of modification record, a modification record M is used in the 

object program to specify any relocation. In the case of use of relocation bit, each instruction is 



 

associated with one relocation bit and, these relocation bits in a Text record is gathered into bit 

masks. 

Modification records are used in complex machines and is also called Relocation and 

Linkage Directory (RLD) specification. The format of the modification record (M) is as follows. 

The object program with relocation by Modification records is also shown here. 

Modification record 

col 1:  M 

col 2-7:  relocation address 

col 8-9:  length (halfbyte) 

col 10: flag (+/-) 

col 11-17: segment name 

HCOPY 000000 001077 

T000000 1D17202D69202D48101036…4B105D3F2FEC032010 

T00001D130F20160100030F200D4B10105D3E2003454F46 

T001035 1DB410B400B44075101000…33200857C003B850 

T0010531D3B2FEA1340004F0000F1..53C003DF2008B850 

T00070073B2FEF4F000005 

M00000705+COPY 

M00001405+COPY 

M00002705+COPY 

E000000 

 

 

The relocation bit method is used for simple machines. Relocation bit is 0: no 

modification is necessary, and is 1: modification is needed. This is specified in the columns 10- 

12 of text record (T), the format of text record, along with relocation bits is as follows. 

Text record 



 

col 1: T 

col 2-7: starting address 

col 8-9: length (byte) 

col 10-12: relocation bits 

col 13-72: object code 

 

Twelve-bit mask is used in each Text record (col:10-12 – relocation bits), since each text 

record contains less than 12 words, unused words are set to 0, and, any value that is to be 

modified during relocation must coincide with one of these 3-byte segments. For absolute loader, 

there are no relocation bits column 10-69 contains object code. The object program with 

relocation by bit mask is as shown below. Observe FFC - means all ten words are to be modified 

and, E00 - means first three records are to be modified. 

 

 

HCOPY 000000 00107A 

T0000001EFFC140033481039000036280030300015…3C0003  … 

T00001E15E000C00364810610800334C0000…000003000000 

T0010391EFFC040030000030…30103FD8105D280030... 

T0010570A8001000364C0000F1001000 

T00106119FE0040030E01079…508039DC10792C0036... 

E000000 

Program Linking 

The Goal of program linking is to resolve the problems with external references 

(EXTREF) and external definitions (EXTDEF) from different control sections. 

EXTDEF (external definition) - The EXTDEF statement in a control section names 

symbols, called external symbols, that are defined in this (present) control section and may be 

used by other sections. 



 

ex: EXTDEF BUFFER, BUFFEND, LENGTH 

EXTDEF LISTA, ENDA 

 

EXTREF (external reference) - The EXTREF statement names symbols used in this 

(present) control section and are defined elsewhere. 

 

 

ex: EXTREF RDREC, WRREC 

 

EXTREF LISTB, ENDB, LISTC, ENDC 

 

How to implement EXTDEF and EXTREF 

 

The assembler must include information in the object program that will cause the loader 

to insert proper values where they are required – in the form of Define record (D) and, Refer 

record(R). 

 

 

Define record 

The format of the Define record (D) along with examples is as shown here. 

Col. 1 D 

Col. 2-7 Name of external symbol defined in this control section 

Col. 8-13  Relative address within this control section (hexadecimal) 

Col.14-73  Repeat information in Col. 2-13 for other external symbols 

Example records 

D LISTA 000040 ENDA 000054 

D LISTB 000060 ENDB 000070 

Refer record 

The format of the Refer record (R) along with examples is as shown here. 

Col. 1 R 

Col. 2-7 Name of external symbol referred to in this control section 



 

Col. 8-73 Name of other external reference symbols 

Example records 

R LISTB ENDB LISTC ENDC 

R LISTA ENDA LISTC ENDC 

R LISTA  ENDA  LISTB  ENDB 

Here are the three programs named as PROGA, PROGB and PROGC, which are 

separately assembled and each of which consists of a single control section. LISTA, ENDA in 

PROGA, LISTB, ENDB in PROGB and LISTC, ENDC in PROGC are external definitions in 

each of the control sections. Similarly LISTB, ENDB, LISTC, ENDC in PROGA, LISTA, 

ENDA, LISTC, ENDC in PROGB, and LISTA, ENDA, LISTB, ENDB in PROGC, are external 

references. These sample programs given here are used to illustrate linking and relocation. The 

following figures give the sample programs and their corresponding object programs. Observe 

the object programs, which contain D and R records along with other records. 

 

0000 PROGA START 0  

  
EXTDEF LISTA, ENDA 

  
EXTREF LISTB, ENDB, LISTC, ENDC 

  
……….. 

 

  
………. 

 

0020 REF1 LDA LISTA 03201D 

0023 REF2 +LDT LISTB+4 77100004 

0027 REF3 LDX 

. 

. 

#ENDA-LISTA 050014 

0040 LISTA EQU * 
  

 

0054 

 

ENDA 

 

EQU 

 

* 

  

0054 REF4 WORD 
 

ENDA-LISTA+LISTC 000014 

0057 REF5 WORD  ENDC-LISTC-10 FFFFF6 



 

. 

. 

 

005A REF6 WORD ENDC-LISTC+LISTA-1 00003F 

005D REF7 WORD 
 

ENDA-LISTA-(ENDB-LISTB) 000014 

0060 REF8 WORD 
 

LISTB-LISTA FFFFC0 

  END REF1  

 

 

0000 PROGB START 0  

  
EXTDEF LISTB, ENDB 

  
EXTREF LISTA, ENDA, LISTC, ENDC 

  
……….. 

 

  
………. 

 

0036 REF1 +LDA LISTA 03100000 

003A REF2 LDT LISTB+4 772027 

003D REF3 +LDX #ENDA-LISTA 05100000 
 
 

 

 

 

0060 LISTB EQU *  

0070 ENDB EQU * 

0070 REF4 WORD ENDA-LISTA+LISTC 000000 

0073 REF5 WORD ENDC-LISTC-10 FFFFF6 

0076 REF6 WORD ENDC-LISTC+LISTA-1 FFFFFF 

0079 REF7 WORD ENDA-LISTA-(ENDB-LISTB) FFFFF0 

007C REF8 WORD LISTB-LISTA 000060 

  
END 

  

0000 PROGC START 0 
 

  
EXTDEF LISTC, ENDC 

 

  
EXTREF LISTA, ENDA, LISTB, ENDB 

 

  ………..   



 

 

 

0018 

 

REF1 

……….. 

+LDA 

 

LISTA 

 

03100000 

001C REF2 +LDT LISTB+4 77100004 

0020 

 

 

0030 

REF3 

 

 

LISTC 

+LDX 

. 

EQU 

#ENDA-LISTA 

. 

* 

05100000 

 

0042 

 

ENDC 

 

EQU 

 

* 

 

0042 REF4 WORD ENDA-LISTA+LISTC 000030 

0045 REF5 WORD ENDC-LISTC-10 000008 

0045 REF6 WORD ENDC-LISTC+LISTA-1 000011 

004B REF7 WORD ENDA-LISTA-(ENDB-LISTB) 000000 

004E REF8 WORD LISTB-LISTA 000000 END 

 

H PROGA 000000 000063 

D LISTA  000040 ENDA 000054 

R LISTB ENDB  LISTC  ENDC 

. 

. 

T 000020 0A 03201D 77100004 050014 

. 

. 

T 000054 0F 000014 FFFF6 00003F 000014 FFFFC0 

M000024 05+LISTB 

M000054 06+LISTC 

M000057 06+ENDC 

M000057 06 -LISTC 

M00005A06+ENDC 



 

M00005A06 -LISTC 

M00005A06+PROGA 

M00005D06-ENDB 

M00005D06+LISTB 

M00006006+LISTB 

M00006006-PROGA 

E000020 

 

H PROGB 000000 00007F 

D LISTB 000060 ENDB 000070 

R LISTA  ENDA  LISTC  ENDC 

. 

T 000036 0B 03100000 772027 05100000 

. 

T 000007 0F 000000 FFFFF6 FFFFFF FFFFF0 000060 

M000037 05+LISTA 

M00003E 06+ENDA 

M00003E 06 -LISTA 

M000070 06 +ENDA 

M000070 06 -LISTA 

M000070 06 +LISTC 

M000073 06 +ENDC 

M000073 06 -LISTC 

M000073 06 +ENDC 

M000076 06 -LISTC 

M000076 06+LISTA 

M000079 06+ENDA 



 

M000079 06 -LISTA 

M00007C 06+PROGB 

M00007C 06-LISTA 

E 

 

H PROGC 000000 000051 

D LISTC 000030 ENDC 000042 

R LISTA ENDA  LISTB  ENDB 

. 

T 000018 0C 03100000 77100004 05100000 

. 

T 000042 0F 000030 000008 000011 000000 000000 

M000019 05+LISTA 

M00001D 06+LISTB 

M000021 06+ENDA 

M000021 06 -LISTA 

M000042 06+ENDA 

M000042 06 -LISTA 

M000042 06+PROGC 

M000048 06+LISTA 

M00004B 06+ENDA 

M00004B 006-LISTA 

M00004B 06-ENDB 

M00004B 06+LISTB 

M00004E 06+LISTB 

M00004E 06-LISTA 

E 



 

The following figure shows these three programs as they might appear in memory after 

loading and linking. PROGA has been loaded starting at address 4000, with PROGB and 

PROGC immediately following. 

For example, the value for REF4 in PROGA is located at address 4054 (the beginning address of 

PROGA plus 0054, the relative address of REF4 within PROGA). The following figure shows 

the details of how this value is computed. 

The initial value from the Text record 

 

T0000540F000014FFFFF600003F000014FFFFC0  is 000014. To this is added the 

address assigned to LISTC, which is 4112 (the beginning address of PROGC plus 30). The result 

is 004126. 

That is REF4 in PROGA is ENDA-LISTA+LISTC=4054-4040+4112=4126. 

 

 

 

Similarly the load address for symbols LISTA: PROGA+0040=4040, LISTB: 

PROGB+0060=40C3 and LISTC: PROGC+0030=4112 

Keeping these details work through the details of other references and values of these 

references are the same in each of the three programs. 

Algorithm and Data structures for a Linking Loader 

 

The algorithm for a linking loader is considerably more complicated than the absolute 

loader program, which is already given. The concept given in the program linking section is used 

for developing the algorithm for linking loader. The modification records are used for relocation 

so that the linking and relocation functions are performed using the same mechanism. 

Linking Loader uses two-passes logic. ESTAB (external symbol table) is the main data 

structure for a linking loader. 

 

 

Pass 1: Assign addresses to all external symbols 

Pass 2: Perform the actual loading, relocation, and linking 



 

ESTAB - ESTAB for the example (refer three programs PROGA PROGB and PROGC) 

given is as shown below. The ESTAB has four entries in it; they are name of the control section, 

the symbol appearing in the control section, its address and length of the control section. 

 

 

 

Control section Symbol Address Length 

PROGA 
 

4000 63 

 
LISTA 4040 

 

 
ENDA 4054 

 

PROGB 
 

4063 7F 

 
LISTB 40C3 

 

 
ENDB 40D3 

 

PROGC 
 

40E2 51 

 
LISTC 4112 

 

 ENDC 4124  

 

 

Program Logic for Pass 1 

 

Pass 1 assign addresses to all external symbols. The variables & Data structures used 

during pass 1 are, PROGADDR (program load address) from OS, CSADDR (control section 

address), CSLTH (control section length) and ESTAB. The pass 1 processes the Define Record. 

The algorithm for Pass 1 of Linking Loader is given below. 



 

 
 

 

Program Logic for Pass 2 

 

Pass 2 of linking loader perform the actual loading, relocation, and linking. It uses 

modification record and lookup the symbol in ESTAB to obtain its addres. Finally it uses end 

record of a main program to obtain transfer address, which is a starting address needed for the 



 

execution of the program. The pass 2 process Text record and Modification record of the object 

programs. The algorithm for Pass 2 of Linking Loader is given below. 

 

 



 

 

SYSTEM SOFTWARE AND OPERATING SYSTEMS 

UNIT-2 

 

UNIT II: Machine dependent compiler features - Intermediate form of the program - Machine 

dependent code optimization - Machine independent compiler features - Compiler designoptions 

- Division into passes – Interpreters – p-code compilers - Compiler-compilers. 
 

MACHINE DEPENDANT COMPILER FEATURES: 
 

 

Introduction: 

 In this chapter we discuss the design and operations and compiler for high level 

programming language. 

 Here also we presents the basic functions of simple one pas compiler which illustrate the 

operations of the compile. 

 Here we also discuss above machine dependent extension which is mainly used for, 

i. Code generation 

ii. Interpreters 

iii. P-code 

iv. Compiler-compiler 

Introduction 

Definition of compiler 

Basic compiler function 

Grammars 

Lexical analysis 

Syntactical analysis 

Code generation 

Basis step to be followed in the compilation process 

Machine dependent compiler features 

Intermediate form of the program 

Machine dependent code optimization 

Intermediate form of the program 

Quartruples 

Form of Quartruples 

Machine dependent code optimization 

Basic block 

Rearrangement of the Quartruples for code optimizationand 

figure 

Synopsis 



 

2 

Definition for compiler: 

 It is a language program that translates program written in high level language to machine 

level language. 

 For example,c, c++ compilers, Pascal 

 

 

Basic compiler function: 

 Here we introduction the fundamental operation that are necessary in compile in the typical 

high level program. 

 The basis compiler function 

i. Grammar 

ii. Lexical analysis 

iii. Syntactical analysis 

iv. Code generation 

Grammar: 

 It specify the form or syntax legal statements the language. 

 A grammar for a programming language is a format description of a syntax or formof 

program an integer statement and written in the language. 

 It does not describe the symaticsof meaning of various statement. 

 

Lexical analysis: 

 It is a process of scanning the source statement, recognizing and classifying the various 

tokens is called the lexical analysis. 

 It is a part of compiler that performs analytic function is known as scanner. 

 

Syntactical analysis (or) parsing: 

 After the tokens scan process each statement in the process must be recognized some 

language construct some as, 

 Declaration 

 Assignment statement 

 Which is described by grammar 

 This process is called syntactic analysis (or) parsing 

 It is performed by a part of the compiler which is known as parser. 

 

Code generation: 

 It is the process of generating the object code. 

 It is the code generation technique that creates the object code per each part of the program 

once syntax has to be recognized. 

High level 

language program 
Compiler Low level 

language program 



 

3 

Basis steps to be followed in the compilation process: 
 

 

 

 

Machine dependent compiler features: 

 The purpose of compiler is to translate the programs written in high level program into 

machine level language. 

 Most of the high levels programming languages are designed to the relatively independentof 

the machine. 

 It means the process of analyzing the syntax of program written in this language should be 

relatively machine independent. 

 It is mainly consists of 2 steps, 

 Intermediate form of the program 

 Machine dependent code optimization 

 

Intermediate form of the program: 

 In the process of analyzing the syntax and semantics of source program or statement 

 Here the translation process (into machine codes) is not yet been performed. 

 There are many possible ways of representing in an intermediate form of, 

 Code analysis 

 Optimization 

Quadruples: 

 It is the process of rearrange to eliminate redundant load and store or operation. 

 Intermediate form of the program represents the executable instruction of the programwith 

sequence of Quartruples. 

 

Form of Quadruples: 
 

 

Code generation 

Syntactical Analysis 

Lexical Analysis 

Intermediate form generation 

Optimization 

Operation, op1, op2, result 



 

4 

 

 

 In the above form operation: Is some function to be performed by object code. 

 Op1and op2: are the operand for this operation 

 Result: where the result value to be placed. 

 

For Example: 1 

Operand 
 

 

 

 

 

Example: 2 

Sum: = Sum+ value 

Operator 

 

Variance: = sum SQ div 100 – mean * mean 

 

Machine dependent code optimization: 

 Here we describe several different possibilities performing the machine dependent code 

optimization. 

 Code optimization is a process of optimizing the code which is used for translating the high 

level language. 

 On many computers there are many numbers of general purpose registers. 

 It may be used, 

i. Hold constants 

ii. Values of variables 

iii. Intermediate result etc…. 

 Some registers can be often used for addressing 

 Machine instruction used registers as operands are usually faster than the corresponding 

instruction that refer to locations in memory. 

 Each time a value is fetch from the memory or calculated as intermediate result and it can be 

assign to some registers 

 The value will be available for later use without requiring a memory reference. 

 This approach also avoids unnecessary movements of value between memory and registers 

which takes time but doesn’t advance in computation. 

 Here we using the divider concepts or basic block concepts to deal the problem. 

 

Basic blocks: 

 It is a sequence Quartruples with one entry point, which is at the beginning of the block. One 

exist point, which is at the ending of the block and no jumps within the blocks. 

 

Rearrangement of Quadruples for code optimization: 

 It is the possibility for code optimization before machine code is generated. 

 It takes the advantage of specific characteristics of and instructions of the target machines. 



 

5 

 For example: that may be special loop control instruction or addressing modes that can be 

used to creak more efficient object mode. 

 On some computer there are high level machine instructions that can perform completed 

function such as calling procedure and manipulated operating data structure in a single 

operation. 

Figure: rearrangement for Quadruples for code optimization 

a) 
 

DIV 
* 

SUMSQ 
MEAN 

#100 
MEAN 

i1 
i2 

- i1  i2 i3 

= i3  VARIANCE 

 
LDA SUMSQ 

 

 DIV  #100  

 STA  T1  

 LDA  MEAN  

 MUL  MEAN  

 STA  T2  

 LDA  T1  

 SUB  T2  

 STA  VARIANCE  

b) 
    

* MEAN MEAN i2  

DIV SUMSQ #100 i1  

- i1 i2 i3  

: = i3  

 

VARIENCE 

 

LDA MEAN 

  

 MUL MEAN   

 STA T1   

 LDA SUMSQ   

 DIV # 100   

 SUB T1   

 STA VARIANCE  



 

6 

MACHINE INDEPENDENT FEATURES 
 

 

Machine independent compiler features: 

 It describes some common compiler features that are largely independent of the particular 

machine be use. 

 The basic step which is available in the machine independent compiler features. 

 Structure variable 

 Machine independent code optimization 

 Storage allocation 

 Block structured languages 

Structure variable: 

 During the compilation of program, we use structure variables such as arrays,records, 

strings, and sets. 

 We are primary concerned with the allocation on storage for such variables with the 

generation of code to referred them. 

 Consider first Pascal array declaration. 

Example: A: ARRAY [1… ........... 10] of integer 

 If each integer variable occupies one words of memory, then we must clearly allocate 10 

words to store this array. 

 Allocation for a multidimensional array is not much more difficult. 

 Consider the following example is a 2 dimensional array. 

B: ARRAY [0…….3, 1……6] of integer 

 When we consider the generation of code for array reference, it becomes important to known 

which array element corresponds to each word for allocated storage. 

 The following figure shows 2 possible of storing the previously define array B: 

 In figure (A); all array elements that have the same value of subscribe at stored in contiguous 

location this is called row major order. 

 If figure (B), all elements that have the same value second subscribe are storedto gather this 

is called column major order. 

1. Introduction 

2.Definition for compiler 

Basis compiler function 

Grammar 

Lexical analysis 

Syntactical analysis 

Code generation 

Basic step for followed in the compilation process 

Machine dependent compiler features 

Synopsis: 



 

7 

Storage of B: ARRAY [0…….3, 1…..6] 

(A) in row major order 

 

Row 0 Row 1 Row 2 Row 3 

 

 

B) In column major order: 
 

 

0, 

1 

1, 

1 

2, 

1 

3, 

1 

0, 

2 

2, 

1 

2, 

2 

3, 

3 

0, 

3 

1, 

3 

2, 

3 

3, 

3 

0, 

4 

1, 

4 

2, 

4 

3, 

4 

0, 

5 

1, 

5 

2, 

5 

3, 

5 

0, 

6 

1, 

6 

2, 

6 

3, 

6 

     
Column1 Col 2 Col 3 Col 4 Col 5 Col6 

The order in which the values 10 are stored in a table (row order, column order) 

1 2 3 4 5 6 
 

 

 

 In row major order, the right most subscribe various most rapidly. 

 In column major order the left most subscribe various most rapidly. 

 This concept can be generalized easily to arrays with more than 2 subscript 

 For multidimensional array, the generation of code depends on whether row major or column 

major order is used to store the array. 

i. Machine independent code optimization: 

 Important source of code optimization is the elimination of common sub expression. 

 The sub expression that appeared at more than one point in the program and compute the 

same value. 

 Consider the statement which is given below here the term 2*j is a common sub expression. 

 An optimizing compiler should generate code so that multiplication is performed only once 

and the result is used in the both places. 

 

For example: code optimization by elimination of common sub expression and removal of loop 

in variance. 



 

8 

x, y: ARRAY [1….10, 1… ..... 10] of integer. 

. 

. 

. 

. 

. 

. 

For I:= 1 To 10 Do 

x [I, 2* J-1]:=y[I, 2 *J] 

 

(A) 
 

 

1) : = #1 - I {loop initialization} 

2) JGT I #10 (20) 

3) - I #1 T1 {subscript calculation for x} 

4) * i1 #10 i2 

5) * #2 J i3 

6) - i3 #1 i4 

7) - i4 #1 i5 

8) + i2 i5 i6 

9) * i6 #3 i7 

10) - I #1 i8 

11) * i8 #10 i9 

12) * #2 J i10 

13) - i10 # i11 

14) + i9 i11 i12 

15) * i12 #3 i13 

16) := y[i13]  [i17]{assignment operation} 

17) + #1 I i14 {end of loop} 

18) := 
19) J 

i14  I 
next statement} 

20)    

   
(B) 

1): = #1 - I {loop initialization} 

2) JGT I #10 (20) {subscript calculation for x} 

3) - I #1 T1 

4) * i1 #10 i2 

5) * #2 J i3 

6) - i3 #1 i4 

7) - i4 i5 i5 

8) + i2 #3 i6 
9) * i6 i4 i7 



 

 
10) + 

 
i2 

 
#3 

9 

i12 {subscript calculation for V} 

11) * i12 i13  

12) := y[i13] I x[i7] {assignment operation} 

13) + #1  i14 {end of loop} 

14) := i14  I 

15) J   (2) 
16)   {next statement} 

(C) 

 Common sub expression is usually dictated through the analysis of an intermediate form of 

the program. It is shown in the program (B) 

 Another common source of code optimization is the removal of loop invariance. 

 The last source of code optimization is the substitution of a more efficient operation forless 

efficient one. 

 The process of transforming the cost or an operation is called reduction is strength of an 

operation. 

 The computation who’s operand values are known at compilation time that can be performed 

by the compiler this optimization is known as folding. 

 

ii. Storage allocation: 

 All programmers define variables were assign storage allocation within the object programas 

their declarations were processed. 

 Temporary variables including the one use to save the written address there also assignfined 

address within the program. 

 This simple type of storage assignment is called static allocation. 

 It is often used for languages that do not allow the recursive use of procedure are subroutine 

and do not provide for the dynamic allocation of storage during execution. 

 The following figure illustrates the recursive invocation of a procedure usingstatic 

storage 

allocation. 
 



 

10 

 

Block structured languages: 

 In some languages a program can be divided into units called blocks. A block is a portion of 

a program that has the ability to declare its own identifiers 

 This definition of a block is also met by units such as procedures and functions in Pascal 

 Each procedure correspond to a block in the following example we shows the outline of a 

block structured program in a Pascal like languages 

 Here we use a terms 

 Procedure 

 block interchangeably 

 Note that blocks may be nested with in other block. 

 Example: in the following example the procedure(b)&(d) are nested with in procedure (a),(c) 

is nested with in procedure (b) 

 Each block will contain declaration of variables. 

 A block may also refer that are defined in any block that contain is, provided the same name. 

Names are not refined inner block. 

 

Example: nested of blocks in a source program 

1) Procedure A; 

2) VAR x, y, z : INTEGER 

3) PROCEDURE B; 

4) VAR w, x, y, z: REAL 

5) PROCEDURE C; 

6) VAR v, w: INTEGER 

7) END {C}; 

8) END {B}; 

9) PROCEDURE D; 

10) VAR X,Z: CHAR; 

11) END {D}; 

12) END {A}; 

FIGURE (A) 
 

 

Block 

Name 

Block 

number 

Block level Surrounding 

block 

A 

B 

C 

D 

1 

2 

3 

4 

1 

2 

3 

2 

- 
1 

2 

1 

 

FIGURE (B) 

 In figure (A) as the beginning of each new block is recognized it is assigned the block 

number in sequence. 



 

11 

 The compiler can construct a table that describe the block structure 

 In fig: (B) the block level entry gives the hosting depth for each block. 

 The outer most block has 2 level number of 1and each other block has 2 level number that is 

1 greater than that surrounding block. 

 The main problem which is arriased in block structured language is declaration problems. 

 Here most of the variable will be repeatedly arriased in each block 

 One common method for providing accepts a variables in surrounding block users called 

display 

 

 

COMPILER DESIGN OPTIONS 
 

 

Introduction: 

 Here we considered some of the possible alternation for the design and construction ofa 

compiler. 

 It was simple one pass design which describes many features that usually required morethan 

one pass to implement. 

 Here we briefly discuss the general questions of dividing the compiler into andthe 

advantages of 1- pass and multi pass design. 

 The compiler consists of following design options. 

 Division into passes 

 Interpreters 

 P- code compiler 

 Compiler-compilers 

Division into passes: 

 Here we present a simple 1- pass compilation scheme for a subset of the Pascal language. 

 In this design the compiler was driven by parsing process. 

 The lexical scanner called when the Pascal needed another input token code generation 

routine was involve as each language construct was recognized by parser 

 The compilation process itself, which required only one pass over the program and no in term 

ediate code generation steps was quit efficient. 

 Not all the languages can be translated by sub a one pass compiler. 

 Here the speed of compilation process is important for that one pass design might be referred 

 If programs are executed many times for each compilation or if the process large amount of 

data, speed of execution becomes more important than speed of compilation 

Introduction 
division into passes 

3.interpretors 

4.P-code compiler 

5.compiler - compilers 

Synopsis 



 

12 

 Multi pass compilers are also used when the amount of memory or other system resources is 

severely limited 

 The requirement of each pass can be kept smaller if the work of compilation is divided into 

several passes 

 Other factors may include the design of the compilers 

 If a compiler is divided into several passes, each pass become 

 Simpler 

 Easy understand 

 Easy to write 

 Easy to test 

 Different passes can be assign to different programmers and can be writtened and tested in 

parallel which shortest the overall time require for compiler construction. 

 

Interpreters: 

 An interpreter process a source program written in a high level language compiler disk 

 The main difference in an interpreter a source program directly instead of translating to 

machine code 

 It usually perform lexical and syntactical analysis functions and then translates thesource 

program into an internal form 

 After translating the source program into an internal form the interpreter execute the 

operation specified by the program 

 During this phase the interpreter can be viewed as set of subroutines 

 The execution of sub routine is driven by the internal form of the program 

 The process of translating a source program into some internal form is simpler and faster the 

compiling it into machine code 

 The execution of translated program by an interpreter is much slower than the execution of 

the machine code produced by the compiler 

 If speed of translation is of primary concerned and execution of translated program will be 

short, than interpreter may be good choice 

 

Advantages interpreters 

 Debugging facilities can be easy provided 

 Symbol table, source line numbers and other information from the source program are 

usually written by the interpreters 

 The interpreters is attractive in educational environment for learning and program testing 

 It have a high speed of transaction 

 Execution time is less 

 It have more additional features 

 

P-code compilers:[byte code compiler]: 

 It is very similar in concept to interpreters 

 Here the source program is analysis and converted into intermediate form which is then 

execution interpretively 



 

13 

 With the p- code compiler this intermediated form is the machine language for a hypothetical 

computer of an code pseudo-machine (or) p- machine 

 

Translation and execution using a p- code compiler: 
 

 

 The above figure: the source program is compiled with help of p-code compiledand 

procedure the object program as a result 

 Then the p-code program is read and executed and control of p-code interpreter 

 

Advantages of p-code compiler: 

 Portability of software 

 P-code object program can be executed on any machine that has p-code interpreter 

Source program 

P-code 

compiler 

Object program (p- code) 

Compiler 

Execute 

 

P-code 

interpreter 



 

14 

 

Design of pseudo-machine (or) p-code machine 

 It is related to the requirement of language being compile. For example: P-code for a Pascal 

compiler might include single P-instruction that performing , 

 Array calculation 

 Handle of procedure entry and exit 

 Perform elementary operations on set 

 P- code compiler are designed for a single user running on a dedicated microcomputer 

system 

 Single user running on a dedicated micro computer system 

 Here the execution p is relatively in significant because the system performance may differs 

and the responds time for the requirest will be verify. 

 For the execution speed, the p-code compiler support the use of machine languagesub 

routine 

 

Compiler-compilers 

 It is a software tool that can be used to help in the task of a compiler construction 

 Such tools are known as compiler generators (or) translator writing system 

 For example: automated compiler construction using a compiler – compilers 
 

 

 In the above figure we have illustrated the process of using the compiler- compilers 

 The user (compiler writer) provides a description of a language to be translated 

 The description may construct set of lexical rule for defining tokens and the grammar for 

source language 

 Compiler-compilers use this information to generate a scanner and a parser directly 

Scanner 

Parser 

Code generation 

 

Lexical rules 

Grammar Compiler- 

compilers 

Syntactical routines 



 

15 

 Others create tables for use of standard table driven scanning and passing routines that are 

supplied by the compiler-compilers 

 

Advantages of compiler – compilers 

 Easy of compiler construction and testing 

 The amount of work required from the user various from one compiler –compiler to another 

 It provides special languages 

 Provide notations, data structure and other facilities that can be used in writing of symatics 

routines. 



 

 

UNIT-III 

SYLLABUS 

What is an Operating System? - Process Concepts: Definition of Process - Process 

States - Process States Transition - Interrupt Processing - Interrupt Classes - Storage 

Management: Real Storage: Real Storage Management Strategies – Contiguous 

versus Non-contiguous storage allocation – Single User Contiguous Storage 

allocation- Fixed partition multiprogramming – Variable partition 

multiprogramming. 

OPERATING SYSTEM 

An operating  system (OS)  is system  software.  It  manages computer 

hardware and software resources. It provides common services for computer 

programs. Time-sharing operating systems schedule tasks for efficient use of the 

system. It may also include accounting software for cost allocation of processor 

time, mass storage, printing, and other resources. 

The operating system acts as an intermediary between programs and the computer 

hardware. The application code is usually executed directly by the hardware. It is 

frequently making system calls to an OS function or is interrupted by it. Operating 

systems are found on many devices that contain a computer – from cellular 

phones and video game consoles to web servers and supercomputers. For hardware 

functions such as input and output and memory allocation. 

PROCESS- DEFINITIONS OF PROCESS 

1. A program in execution 

2. An asynchronous activity 

3. The “animated sprit” of a procedure 

4. The “locus of control” of a procedure in execution 



 

5. That entity to which processors are assigned 

6. The “dispatchable” unit 

 
A process is a program at the time of execution. The process is more than the program 

code. It includes the program counter, the process stack, and the content of the process 

register, etc. The purpose of the process stack is to store temporary data, such as 

subroutine parameters, return address and temporary variables. 

An instance of a program running on a computer. The entity that can be assigned to 

and executed on a processor. A unit of activity characterized by the execution of a 

sequence of instructions, a current state, and an associated set of system resources. An 

instance of a program running on a computer. The entity that can be assigned to and 

executed on a processor. A unit of activity characterized by the execution of a sequence 

of instructions, a current state, and an associated set of system resources. 

 

 

 

 

 

PROCESS STATES 

 
Start: The process is being created. 

Running: The process is being executed. 

Waiting: The process is waiting for some event to occur. 

Ready: The process is waiting to be assigned to a processor. 

Terminate: The process has finished execution. 

Many processes can be running in any processor at any time. But many processes may 

be in ready queue waiting for states. Consider the figure below depicts the state 

diagram of the process states. 



 

In a uniprocessor system only one process may be running at a time. It several may be 

ready and several blocked. The operating system maintains a ready list of ready 

processes and a blocked list of blocked processes. The ready list is maintained in 

priority order. The next process to receive a processor is the first one in the list (i.e., 

the process with the highest priority). The blocked list is typically unordered - 

processes do not become unblocked (i.e., ready) in priority order. Unblock in the order 

in which the events they are waiting for occur. 

PROCESS STATE TRANSITIONS 

 
When a user runs a program, processes are created and inserted into the ready list. A 

process moves toward the head of the list as other processes complete their turns using 

a processor. When a process reaches the head of the list, a processor becomes available, 

that process is given a processor. 

 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
  

 



 

New to Ready 

 
The operating system creates a process. And prepares the process to be executed by, 

then the operating system moves the process into the ready queue. 

Ready to Running 

 
When it is time to select a process to run, the operating system selects one of the jobs 

for the ready queue and move the processes from the ready state to the running state. 

It is said to make a state transition from the ready state to the running state. The act of 

assigning a processor to the first process on the ready list is called dispatching. It is 

performed by a system entity called the dispatcher. The state transition is, 

dispatch (process name): ready->running 

Running to Terminated 

When the execution of a process has completed then the operating system terminates 

that process from running state. Sometimes the operating system terminates the 

processes for some other reasons also include time limit exceeded, memory 

unavailable access violation, protection error, I/O failure, data misuse and so on. 

Running to Ready 

 
When the time slot for the processor expires or if the processor receives an interrupt 

signal, then the operating system shifts the running process to the ready state.  

Processes that are in the ready or running states are said to be awake. To prevent any 

one process from monopolizing (controlling) the system, either accidentally or 

maliciously the operating system sets a hardware interrupting clock (also called an 

interval timer) to allow a process to run for a specific time interval or quantum. The 

state transition is, 

timerrunout (process name): running->ready 

 
For example, process P1 is being executed by the processor, at that time processor, P2 

generates an interrupt signal to the processor. Then the processor compares the 

priorities of process P1 and P2. If P1>P2 then the processor continues executing P1. 

Otherwise, the processor switches to process P2, and process P1 is moved to the ready 

state. 



 

Running to Waiting 

 
A process is put into the waiting state if the process needs an event to occur, or an I/O 

device is to read. The operating system does not provide the I/O or event immediately 

then the process is moved to the waiting state by the operating system. 

Waiting to Ready 

 
A process in the blocked state is moved to the ready state when the event for which it 

has been waiting occurs. 

For example, a process is in running state needs an I/O device, then the process 

moved to wait or blocked state. When the I/O device is provided by the operating 

system, the process moved to the ready state from waiting or blocked state. 

Running to Block 

 
If a running process initiates an input/output operation before its quantum expires. 

The running process voluntarily relinquishes the CPU. (i.e the process blocks itself 

pending the completion of the input/output operation). The state transition is, 

block (process name): running->blocked 

 
Block to Ready 

 
The only other allowable state transition in three-state model occurs when an I/O 

operation (or some other event the process is waiting for) completes. In this case, the 

operating system transitions the process from the blocked to the ready state. The state 

transition is, 

wakeup (process name): blocked->ready 

INTERRUPT 

Interrupts enable software to respond to signals from hardware. The operating system 

may specify a set of instructions, called an interrupt handler to be executed in response 

to each type of interrupt. This allows the operating system to gain control of the 

processor to manage system resources. Interrupt is called a trap. Synchronous with 

the operation of the process. For example, dividing by zero or referencing protected 

memory. Interrupts may also be caused by some event that is unrelated to a process's 



 

current instruction. Asynchronous with the operation of the process. For example, the 

keyboard generates an interrupt when a user presses a key. The mouse generates an 

interrupt when it moves or when one of its buttons is pressed. Interrupts provide a 

low-overhead means of gaining the attention of a processor. Polling is an alternative 

approach for interrupts. Processor repeatedly requests the status of each device. 

Increases in overhead as the complexity of the system increases. 

Difference between polling and interrupts 

 
A simple example microwave oven. A chef may either set a timer to expire after an 

appropriate number of minutes (the timer sounding after this interval interrupts the 

chef) The chef may regularly peek through the oven's glass door and watch as the 

roast cooks (this kind of regular monitoring is an example of polling). 

Interrupt processing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Handling Interrupts 

 
1. The interrupt line, an electrical connection between the mainboard and a processor. 

It becomes active—devices such as timers, peripheral cards and controllers send 

signals that activate. The interrupt line to inform a processor that an event has 

occurred (e.g., a period of time has passed or an I/O request has completed). Most 

processors contain an interrupt controller that orders interrupts according to their 

priority so that important interrupts are serviced first. Other interrupts are queued 

until all higher-priority interrupts have been serviced. 



 

2. After the interrupt line becomes active, the processor completes execution of the 

current instruction, then pauses the execution of the current process. To pause process 

execution, the processor must save enough information. The process can be resumed 

at the correct place and with the correct register information. 

3. The processor then passes control to the appropriate interrupt handler. Each type 

of interrupt is assigned a unique value that the processor uses as an index into the 

interrupt vector, which is an array of pointers to interrupt handlers. The interrupt 

vector is located in memory that processes cannot access, so that processes cannot 

modify its contents. 

4. The interrupt handler performs appropriate actions based on the type of interrupt. 

 
5. After the interrupt handler completes, the state of the interrupted process is 

restored. 

6. The interrupted process (or some other "next process") executes. It is the 

responsibility of the operating system to determine whether the interrupted process 

or some other "next process" executes. 

Interrupt classes 

 
There are six interrupt classes. These are, 

 
1. SVC (Supervisor call) interrupts 

2. I/O interrupts 

3. External interrupts 

4. Restart interrupts 

5. Program check interrupts 

6. Machine check interrupts 

 
SVC (Supervisor call) interrupts 

 
These are initiated by a running process that executes the SVC instruction. It is a user- 

generated request for a particular system service such as performing input/output. It 

helps keep the operating system secure from the users. A user may not arbitrarily 

enter the operating system. The user must request a service through as SVC. 



 

I/O interrupts 

 
These are initiated by the input/output hardware. They signal to the CPU that the 

status of a device has changed. I/O interrupts are caused when an I/O operation 

completes, when an I/O error occurs. 

External interrupts 

 
These are caused by various events including the expiration of a quantum on an 

interrupting clock. The pressing of the console’s interrupt key by the operator or the 

receipt of a signal from another processor on a multiprocessor system. 

Restart interrupts 

 
These occur when the operator presses the console’s restart button. When a restart 

SIGP (Signal Processor) instruction arrives from another processor on a 

multiprocessor system. 

Program check interrupts 

 
These are caused by a wide range of problems. It may occur as a program’s machine 

language instructions are executed. Example, division by zero, arithmetic overflow or 

underflow. Data in wrong format attempt to reference a memory location beyond the 

limits of real storage memory. 

Machine check interrupts 

 
These are caused by malfunctioning (not working) hardware. 

 
STORAGE MANAGEMENT 

 
The term storage management encompasses the technologies and processes 

organizations use to maximize or improve the performance of their data storage 

resources. It is a broad category that includes virtualization, replication, mirroring, 

security, compression, traffic analysis, process automation, storage provisioning and 

related techniques. The memory management function keeps track of the status of 

each memory location, either allocated or free. It determines how memory is allocated 

among competing processes, deciding which gets memory, when they receive it, and 

how much they are allowed. When memory is allocated, it determines which memory 



 

locations will be assigned. It tracks when memory is freed or unallocated and updates 

the status. 

Storage Hierarchy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Hierarchical memory organization 

 
Programs and data must be in main memory before the system can execute or 

reference them. Those that the system does not need immediately may be kept in 

secondary storage until needed, then brought into main memory for execution or 

reference. 

Secondary storage media, such as tape or disk, are generally far less costly per bit than 

main memory and have much greater capacity. Main storage may generally be 

accessed much faster than secondary storage. The memory hierarchy contains levels 

characterized by the speed and cost of memory in each level. Systems move programs 

and data back and forth between the various levels. The cache is a high-speed storage 

that is much faster than main storage. 

Cache memory imposes one more level of data transfer on the system. Cache storage 

is extremely expensive compared with main storage. Programs in main memory are 

transferred to the cache before being executed—executing programs from cache is 

much faster than from main memory. 



 

Storage management strategies 

 
Memory management strategies are designed to obtain the best possible use of main 

memory. 

They are divided into: 

 
1. Fetch strategies 

2. Placement strategies 

3. Replacement strategies 

 
Fetch strategies 

 
It determines when to move the next piece of a program or data to main memory from 

secondary storage. 

It has divided them into two types, 

 
1. Demand fetch strategies 

2. Anticipatory fetch strategies 

 
Demand fetch strategy: The system places the next piece of program or data in main 

memory when a running program references it. Designers believed that because 

cannot in general predict the paths of execution that programs will take, the overhead 

involved in making guesses would far exceed expected benefits. 

Anticipatory fetch strategies: Today, however, many systems have increased 

performance by employing anticipatory fetch strategies, which attempt to load a piece 

of program or data into memory before it is referenced. 

Placement strategies 

 
It determines where in main memory the system should place incoming program or 

data pieces. Consider first-fit, best-fit, and worst-fit memory placement strategies. 

program and data can be divided into fixed-size pieces called pages. It can be placed 

in any available page frame. 



 

Replacement strategies 

 
When memory is too full to accommodate a new program, the system must remove 

some (or all) of a program or data that currently resides in memory. The system's 

replacement strategy determines which piece to remove. 

DEFINITION OF CONTIGUOUS MEMORY ALLOCATION 

 
The operating system and the user’s processes both must be accommodated in the 

main memory. The main memory is divided into two partitions. 

 
1. at one partition the operating system resides 

2. at other the user processes reside 

 
In usual conditions, the several user processes must reside in the memory at the same 

time. It is important to consider the allocation of memory to the processes. The 

Contiguous memory allocation is one of the methods of memory allocation. In 

contiguous memory allocation, when a process requests for the memory. A single 

contiguous section of memory blocks is assigned to the process according to its 

requirement. 

 
 
 
 
 
 
 
 
 
 

 
DEFINITION NON-CONTIGUOUS MEMORY ALLOCATION 

 
The Non-contiguous memory allocation allows a process to acquire the several 

memory blocks at the different location in the memory according to its requirement. 

The non-contiguous memory allocation also reduces the memory wastage caused due 

to internal and external fragmentation. As it utilizes the memory holes, created during 

internal and external fragmentation. 



 

 

 
Paging and segmentation are the two ways which allow a process physical address 

space to be non-contiguous. In non-contiguous memory allocation, the process is 

divided into blocks (pages or segments) which are placed into the different area of 

memory space according to the availability of the memory. The non-contiguous 

memory  allocation  has  an  advantage  of  reducing  memory  wastage  but, 

it increases the overheads of address translation. The process is placed in a different 

location in memory, it slows the execution of the memory because time is consumed 

in address translation. 

Contiguous versus Non-contiguous Storage allocation 
 

Contiguous Memory Allocation Non-Contiguous Memory Allocation 

 
The contiguous Memory Allocation 

technique allocates one single 

contiguous block of memory to the 

process and memory is allocated to the 

process in a continuous fashion. 

The non-Contiguous Memory allocation 

technique divides the process into 

several blocks and then places them in 

the different address space of the 

memory that is memory is allocated to the 

process in a non-contiguous fashion. 

In this Allocation scheme, there is no 

overhead in the address translation 

while the execution of the process. 

While in this scheme, there is overhead in 

the address translation while the 

execution of the process. 

 
In Contiguous Memory Allocation, the 

process executes faster because the 

whole process is in a sequential block. 

In Non-contiguous Memory allocation 

execution of the process is slow as the 

process is in different locations of the 

memory. 

Contiguous Memory Allocation is 

easier for the Operating System to 

control. 

The non-Contiguous Memory Allocation 

scheme is difficult for the Operating 

System to control. 



 

Contiguous Memory Allocation Non-Contiguous Memory Allocation 

 
In this, the memory space is divided 

into fixed-sized partitions and each 

partition is allocated only to a single 

process. 

In this scheme, the process is divided into 

several blocks and then these blocks are 

placed in different parts of the memory 

according to the availability of memory 

space. 

Contiguous memory allocation 

includes single partition allocation 

and multi-partition allocation. 

 
Non-Contiguous memory allocation 

includes Paging and Segmentation. 

 
In this type of memory allocation, 

generally, a table is maintained by the 

operating system that maintains the list 

of all available and occupied 

partitions in the memory space. 

In this type of memory allocation 

generally, a table has to be maintained 

for each process that mainly carries the 

base addresses of each block that has 

been acquired by a process in the 

memory. 

There is wastage of memory in 

Contiguous Memory allocation. 

There is no wastage of memory in Non- 

Contiguous Memory allocation. 

In this type of allocation, swapped-in 

processes are arranged in the originally 

allocated space. 

In this type of allocation, swapped-in 

processes can be arranged in any place in 

the memory. 

 
SINGLE USER CONTIGUOUS STORAGE ALLOCATION 

Early computer systems allowed only one person at a time to use a machine. All the 

machine's resources were dedicated to that user. Billing was straightforward—the 

user was charged for all the resources whether or not the user's job required them. In 

fact, the normal billing mechanisms were based on wall clock time. The system 

operator gave the user machine for some time interval and charged a flat hourly rate. 

The programmer wrote all the code necessary to implement a particular application, 

including the highly detailed machine-level input/output instructions. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The memory organization for a typical single-user contiguous memory allocation system 

System  designers  consolidated  input/output  coding  that  implemented  basic 

functions into an input/output control system (IOCS). The programmer called IOCS 

routines (procedures) to do the work instead of having to "reinvent the wheel" for each 

program. The IOCS greatly simplified and expedited (advanced) the coding process. 

The implementation of input/output control systems may have been the beginning of 

today's concept of operating systems. 

Advantages and Disadvantages of Single Contiguous Allocation 

Advantages 

1. Simple Allocation 

2. Entire Scheme requires less memory 

3. Easy to implement and use 

Disadvantages 

1. Memory is not fully utilized 

2. Processor (CPU) is also not fully utilized 

3. User program is being limited to the size available in the main memory 

OVERLAYS 

How contiguous memory allocation limited the size of programs that could execute 

on a system? One way in which a software designer could overcome the memory 

limitation was to create overlays, which allowed the system to execute programs 

larger than main memory. 



 

Overlay Structure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The programmer divides the program into logical sections. When the program does 

not need the memory for one section. The system can replace some or all of it with the 

memory for a needed section. Overlays enable programmers to "extend" main 

memory. However, manual overlay requires careful and time-consuming planning. 

The programmer often must have detailed knowledge of the system's memory 

organization. A program with a sophisticated overlay structure can be difficult to 

modify. Indeed, as programs grew in complexity, by some estimates as much as 40 

percent of programming expense were for organizing overlays. It became clear that 

the operating system needed to insulate the programmer from complex memory 

management tasks such as overlays. 

Protection in a Single-User System 

A process can interfere with the operating system's memory - either intentionally or 

inadvertently (mistake) -by replacing some or all of its memory contents with other 

data. If it destroys the operating system, then the process cannot proceed. If the 

process attempts to access memory occupied by the operating system. 

Boundary register 

 
The user can detect the problem, terminate execution, possibly fix the problem and re- 

launch the program. Protection in single-user contiguous memory allocation systems 

can be implemented with a single boundary register built into the processor. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Memory protection with single-user contiguous memory allocation 

 

The boundary register contains the memory address at which the user's program 

begins. Each time a process references a memory address, the system determines if the 

request is for an address greater than or equal to that stored in the boundary register. 

The hardware that checks boundary addresses operates quickly to avoid slowing 

instruction execution. The single boundary register represents a simple protection 

mechanism. 

Single-Stream Batch Processing 

 
Early single-user real memory systems were dedicated to one job for more than the 

job's execution time. Jobs generally required considerable setup time during which the 

operating system was loaded tapes and disk packs were mounted. When jobs 

completed, they required considerable teardown time as tapes and disk packs were 

removed. Designers realized that if they could automate various aspects of job-to-job 

transition. It could reduce considerably the amount of time wasted between jobs. This 

led to the development of batch-processing systems. 

In single stream batch processing, jobs are grouped in batches by loading them 

consecutively onto tape or disk. A job stream processor reads the job control language 

statements and facilitates the setup of the next job. Batch-processing systems greatly 

improved resource utilization and helped demonstrate the real value of operating 

systems and intensive resource management. Single-stream batch-processing systems 

were the state of the art in the early 1960s. 



 

REAL MEMORY MANAGEMENT TECHNIQUES 

 
The main memory has to accommodate both the operating system and user space. 

Now, here the user space has to accommodate various user processes. We also want 

these several user processes must reside in the main memory at the same time. 

🞂  Fixed/Static Partitioning 

 
🞂  Variable/Dynamic Partitioning 

 
🞂 Simple/Basic Paging 

 
🞂 Simple/Basic Segmentation 

 
Fixed partition multiprogramming 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Even with batch-processing operating systems, single-user systems still waste a 

considerable amount of the computing resource. The program consumes the CPU 

resource until an input or output is needed. When the I/O request is issued, the job 

often cannot continue until the requested data is either send or received. Input and 

output speeds are extremely slow compared with CPU speeds. Increase the utilization 

of the CPU by intensive management. This time chose to implement 

multiprogramming systems. Several users simultaneously compete for system 

resources. The job currently waiting for I/O will produce the CPU to another job ready 

to calculations if indeed, another job is waiting. Both input/output and CPU 

calculations can occur simultaneously. 



 

Advantage of Multiprogramming 

 
It is necessary for several jobs to reside in the computer’s main storage at once. When 

one job requests input/output, the CPU may be immediately switched to another and 

may do calculations without delay. Multiprogramming requires considerably more 

storage than a single user system. The improved resource use for the CPU. The 

peripheral devices more than justifies the expense of additional storage. 

Fixed Partition Multiprogramming: Absolute Translation and Loading 

 
Fixed partition multiprogramming in which main storage was divided into a number 

of fixed-size partitions. Each partition holds a single job. The CPU was switched 

rapidly between users to create the illusion of simultaneity. 

 
 
 
 
 
 
 
 
 
 
 

 
Jobs were translated with absolute assemblers and compilers to run only in a specific 

partition. Job was ready to run and its partition was occupied. Then that job had to 

wait, even if other partitions were available. This resulted in waste of the storage 

resource. But the OS was relatively straightforward to implement. 

 
 
 
 
 
 
 
 
 
 
 

 
Memory waste under fixed partition multiprogramming with absolute translation and loading 



 

An extreme example of poor storage utilization in fixed partition multiprogramming 

with absolute translation and loading. Jobs waiting for partition 3 are small and could 

“fit” in the other partitions. But with absolute translation and loading, these jobs may 

run only in partition 3. The other two partitions remain empty. 

Fixed partition multiprogramming: relocatable translation and loading 
 
 
 
 
 
 
 
 
 
 
 
 

 
Relocating compilers, assemblers and loaders are used to produce relocatable 

programs. It can run in any available partition that is large enough to hold them. This 

scheme eliminates some of the storage waste characteristic in multiprogramming with 

absolute translation and loading. 

Protection in multiprogramming systems 

 
Allowing Relocation and Transfers between partitions. Protection implemented by 

the  use  of  several boundary  registers:  low  and  high boundary  registers, 

or base register with length. Fragmentation occurs if user programs cannot 

completely fill a partition - wasteful. 



 

Fragmentation in fixed partition multiprogramming 

 
Storage fragmentation occurs in every computer system. In fixed partition 

multiprogramming systems, fragmentation occurs. Either user jobs do not completely 

fill their designed partitions. A partition remains unused if it is too small to hold a 

waiting job. Consider the warehouse example, multiple jobs of different types 

(perhaps size) entering storage in different partitions. Several users simultaneously 

compete for system resources. Switch between I/O jobs and calculation jobs for 

instance. To take advantage of this sharing of CPU, important for many jobs to be 

present in main memory. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Internal fragmentation in a fixed partition multiprogramming system 

 

VARIABLE PARTITION MULTIPROGRAMMING 

 
System designers found fixed partitions too respective. It decided that an obvious 

improvement, to allow jobs to occupy as much storage needed. No fixed boundaries 

would be observed. Instead, jobs would be given as much storage as they required is 

called variable partition multiprogramming. 

In variable partition multiprogramming the jobs arrive, the scheduling mechanisms 

decide for proceed. They are given much storage as they need. There is no wastage a 

job partition is exactly the size of the job. Every storage organization scheme involves 

some degree of waste. 

In variable partition multiprogramming, the waste does not become obvious until jobs 

start to finish. Leave holes in the main storage. These holes can be used for other jobs. 

These remaining holes get smaller eventually becoming too small to hold new jobs.  

 

 

 



 

 

 

Initial partition assignment in variable partition multiprogramming 



 

 

Variable partition multiprogramming characteristics 

 
🞂 Coalescing holes 

 
🞂 Storage compaction 

 
🞂 Storage placement strategies 

 

Coalescing holes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Job finishes in variable partition multiprogramming system, check whether the 

storage being freed (unrestricted) borders on other free storage areas (holes). The free 

storage list, 

 An additional hole. 

 A single hole reflecting the merger of the existing hole. 

 New adjacent hole. 

 
The process of merging adjacent holes to form a single larger hole in called coalescing. 

 
Storage compaction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
Storage compaction in variable partition multiprogramming 

When a job requires a certain amount of main storage no individual hole is large 

enough to hold the job. Even though the sum of all the holes is larger than the storage 

needed by the new job. The technique of storage compaction involves moving all 

occupied areas of storage to one end or the other of main storage. Rearranges memory 

into a single contiguous block free space. A single contiguous block of occupied space. 

It is also referred as burping the storage or garbage collection. 

Storage placement strategies 

 
1. Best fit strategy 

An incoming job is placed in the hole where it best fits (i.e., the amount of free 

space left is minimal) 

2. First fit strategy 

Placed in the first available slot large enough to hold the job. 

3. Worst fit strategy 

Place in storage in the largest slot available. The remaining may still be large 

enough to hold another job. 

First fit strategy 

 
This method keeps the free/busy list of jobs organized by memory location, low- 

ordered to high-ordered memory. In this method, first job claims the first available 

memory with space more than or equal to its size. The operating system doesn’t search 

for appropriate partition but just allocate the job to the nearest memory partition 

available with sufficient size. 

 



 

Best fit strategy 

 
This method keeps the free/busy list in order by size – smallest to largest. In this 

method, the operating system first searches the whole of the memory according to the 

size of the given job and allocates it to the closest-fitting free partition in the memory, 

making it able to use memory efficiently. Here the jobs are in the order from smallest 

job to largest job. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Worst fit strategy 

In this allocation technique, the process traverses the whole memory and always 

search for the largest hole/partition, and then the process is placed in that 

hole/partition. It is a slow process because it has to traverse the entire memory to 

search the largest hole. 



 

 
SYSTEM SOFTWARE AND OPERATING SYSTEM 

Unit –IV 

 
Virtual Storage: Virtual Storage Management Strategies – Page Replacement Strategies – Working 

Sets – Demand Paging – Page Size. Processor Management: Job and Processor Scheduling: 

Preemptive Vs Non-preemptive scheduling – Priorities – Deadline scheduling. 

VIRTUAL STORAGE 

 

Virtual storage management strategies 

There are three main strategies namely 

Fetch strategies – concerned with when a page or segment should be brought from secondary 

to primary storage 

Placement strategies – concerned with where in primary storage to place an incoming page or 

segment 

Replacement strategies – concerned with deciding which page or segment to displace to make 

room for an incoming page or segment when primary storage is already fully committed 

Page replacement algorithms 

There are many page replacement algorithms and the most important three are FIFO, optimal 

replacement and least recently used. This subsection explains the above three algorithms. 

FIFO 

The simplest page replacement algorithm is first in first out. In this scheme, when a page 

must be replaced, the oldest page is chosen. For example consider the page reference string 

1, 5, 6, 1, 7, 1, 5, 7, 6, 1, 5, 1, 7 

For a three frame case, the FIFO will work as follows. Let all our 3 frames are initially empty. 

1 1 1 7 7 7 6 6 

5 5 5 1 1 1 7 

6 6 6 5 5 5 

You can see, FIFO creates eight page faults. 

Optimal replacement 

In optimal page replacement algorithm, we replace that page which will not be used for the 

longest period of time. For example for the reference string 



 

 
1, 5, 6, 1, 7, 1, 5, 7, 6, 1, 5, 1, 7 

with 3 frames, the page faults will be as follows 

1 1 1 1 1 1 

5 5 5 5 5 

6 7 6 7 

You can see that Optimal replacement, creates six page faults 

Least recently used 

Most of the case, predicting the future page references is difficult and hence implementing 

optimal replacement is difficult. Hence there is a need of other scheme which approximates the 

optimal replacement. Least recently used (LRU) schemes approximate the future uses by the past 

used pages. In LRU scheme, we replace those pages which have not been used for the longest 

period of time. 

For example for the reference string 

1, 5, 6, 1, 7, 1, 5, 7, 6, 1, 5, 1, 7 

with 3 frames, the page faults will be as follows 

1 1 1 1 1 6 6 6 7 

5 5 7 7 7 7 5 5 

6 6 5 5 1 1 1 

You can see that LRU creates nine page faults 

Working sets 

If the number of frames allocated to a low-priority process falls below the minimum 

numberrequired, we must suspend its execution. We should then page out it remaining pages, 

freeing all of its allocated frames. A process is thrashing if it is spending more time paging than 

executing. 

Thrashing can cause severe performance problems. To prevent thrashing, we must 

provide a process with as many frames as it needs. There are several techniques available to 

know how many frame a process needs. Working sets is a strategy which starts by looking at 

what a program is actually using. 

Demand paging 

Demand paging is the most common virtual memory system. Demand paging is similar to a 

paging system with swapping. When we need a program, it is swapped from the backing storage. 



 

 
There are also lazy swappers, which never swaps a page into memory unless it is needed. 

The lazy swapper decreases the swap time and the amount of physical memory needed, allowing 

an increased degree of multiprogramming. 

 

Page size 

There is no single best page size. The designers of the Operating system will decide the 

page 

size for an existing machine. Page sizes are usually be in powers of two, ranging from 28 to 212 

bytes or words. The size of the pages will affect in the following way. 

a) Decreasing the page size increases the number of pages and hence the size of the page 

table. 

b) Memory is utilized better with smaller pages. 

c) For reducing the I/O time we need to have smaller page size. 

d) To minimize the number of page faults, we need to have a large page size 

 

PROCESSOR MANAGEMENT: 

Introduction: 

When one or more process is runnable, the operating system must decide which oneto run 

first. The part of the operating system that makes decision is called the Scheduler; the algorithm 

it uses is called the Scheduling Algorithm. 

An operating system has three main CPU schedulers namely the long term scheduler, 

short term scheduler and medium term schedulers. The long term scheduler determines which 

jobs are admitted to the system for processing. It selects jobs from the job pool and loads them 

into memory for execution. The short term scheduler selects from among the jobs in memory 

which are ready to execute and allocated the cpu to one of them. The medium term scheduler 

helps to remove processes from main memory and from the active contention for the cpu and 

thus reduce the degree of multiprogramming. 

The cpu scheduler has another component called as dispatcher. It is the module that 

actually gives control of the cpu to the process selected by the short term scheduler which 

involves loading of registers of the process, switching to user mode and jumping to the proper 

location. 



 

 
Before looking at specific scheduling algorithms, we should think about what the 

scheduler is trying to achieve. After all the scheduler is concerned with deciding on policy, not 

providing a mechanism. Various criteria come to mind as to what constitutes a good scheduling 

algorithm. Some of the possibilities include: 

1. Fairness – make sure each process gets its fair share of the CPU. 

2. Efficiency (CPU utilization) – keep the CPU busy 100 percent of the time. 

3. Response Time [Time from the submission of a request until the first response is produced] – 

minimize response time for interactive users. 

4. Turnaround time [The interval from the time of submission to the time of completion] 

– minimize the time batch users must wait for output. 

5. Throughput [Number of jobs that are completed per unit time] – maximize the number of jobs 

processed per hour. 

6. Waiting time – minimize the waiting time of jobs 

 

Preemptive Vs Non-Preemptive 

The Strategy of allowing processes that are logically runnable to be temporarily 

suspended is called Preemptive Scheduling. ie., a scheduling discipline is preemptive if the CPU 

can be taken away. Preemptive algorithms are driven by the notion of prioritized computation. 

The process with the highest priority should always be the one currently using the processor. If a 

process is currently using the processor and a new process with a higher priority enters, the ready 

list, the process on the processor should be removed and returned the ready list until it is once 

again the highest-priority process in the system. 

Run to completion is also called Nonpreemptive Scheduling. ie., a scheduling discipline 

is nonpreemptive if, once a process has been given the CPU, the CPU cannot be taken away from 

that process. In short, Non-preemptive algorithms are designed so that once a process enters the 

running state(is allowed a process), it is not removed from the processor until it has completed its 

service time ( or it explicitly yields the processor). This leads to race condition and necessitates 

of semaphores, monitors, messages or some other sophisticated method for preventing them. On 

the other hand, a policy of letting a process run as long as it is wanted would mean that some 

process computing π to a billion places could deny service to all other processes 

indefinitely. 



 

 

 

Priorities 

A priority is associated with each job, and the cpu is allocated to the job with the highest 

priority. Priorities are generally some fixed numbers such as 0 to 7 or 0 to 4095. However there 

is no general agreement on whether 0 is the highest or lowest priority. Priority can be defined 

either internally or externally. Examples of internal priorities are time limits, memory 

requirements, number of open files, average I/O burst time, CPU burst time, etc. External 

priorities are given by the user. 

A major problem with priority scheduling algorithms is indefinite blocking or starvation. 

A solution to this problem is aging. Aging is a technique of gradually increasing the priority of 

jobs that wait in the system for a long time. 

 

Deadline scheduling 

Certain jobs have to be completed in specified time and hence to be scheduled based on 

deadline. If delivered in time, the jobs will be having high value and otherwise the jobs will be 

having nil value. The deadline scheduling is complex for the following reasons 

a) Giving resource requirements of the job in advance is difficult 

b) A deadline job should be run without degrading other deadline jobs 

c) In the event of arriving new jobs, it is very difficult to carefully plan resource requirements 

d) Resource management for deadline scheduling is really an overhead 



 

SYSTEM SOFTWARE AND OPERATING SYSTEM 

UNIT –V 

 

 
Device and Information Management Disk Performance Optimization: Operation of moving head 

disk storage – Need for disk scheduling – Seek Optimization – File and Database Systems: File 

System – Functions – Organization – Allocating and freeing space – File descriptor – Access control 

matrix. 

DEVICE AND DISK MANAGEMENT 

 

Introduction 

In multiprogramming systems several different processes may want to use the system's 

resources simultaneously. For example, processes will contend to access an auxiliary storage 

device such as a disk. The disk drive needs some mechanism to resolve this contention, sharing 

the resource between the processes fairly and efficiently. 

A magnetic disk consists of a collection of platters which rotate on about a central 

spindle. These platters are metal disks covered with magnetic recording material on both sides. 

Each disk surface is divided into concentric circles called tracks. Disk divides each track into 

sectors, each typically contains 512 bytes. While reading and writing the head moves over the 

surface of the platters until it finds the track and sector it requires. This is like finding someone's 

home by first finding the street (track) and then the particular house number (sector). There is 

one head for each surface on which information is stored each on its own arm. In most systems 

the arms are connected together so that the heads move inunison, so that each head is over the 

same track on each surface. 

The term cylinder refers to the collection of all tracks which are under the heads at any 

time. In order to satisfy an I/O request the disk controller must first move the head to the correct 

track and sector. Moving the head between cylinders takes a relatively long time so in order to 

maximize the number of I/O requests which can be satisfied the scheduling policy should try to 

minimize the movement of the head. On the other hand, minimizing head movement by always 

satisfying the request of the closest location may mean that some requests have to wait a long 

time. Thus, there is a trade-off between throughput (the average number of requests satisfied in 

unit time) and response time (the average time between a request arriving and it being satisfied). 



 

 
 

 

Need for Disk Scheduling 

Access time has two major components namely seek time and rotational latency. 

Seektime is the time for the disk are to move the heads to the cylinder containing the desired 

sector. Rotational latency is the additional time waiting for the disk to rotate the desired sector to 

the disk head. In order to have fast access time we have to minimize the seek time which is 

approximately equal to the seek distance. 

Disk bandwidth is the total number of bytes transferred, divided by the total time between 

the first request for service and the completion of the last transfer. The operating system is 

responsible for using hardware efficiently for the disk drives, to have a fast access time and disk 

bandwidth. This in turn needs a good disk scheduling. 

 

FILE SYSTEMS AND ORGANIZATION 

 

In computing, a file system (often also written as file system) is a method for storing and 

organizing computer files and the data they contain to make it easy to find and access them. File 

systems may use a data storage device such as a hard disk or CD-ROM and involve maintaining 

the physical location of the files, they might provide access to data on a file server by acting as 

clients for a network protocol (e.g., NFS, SMB, or 9P clients), or they may be virtual and exist 

only as an access method for virtual data. 

More formally, a file system is a set of abstract data types that are implemented for the 

storage, hierarchical organization, manipulation, navigation, access, and retrieval of data. File 

systems share much in common with database technology, but it is debatable whether a file 

system can be classified as a special-purpose database (DBMS). 

 

Functions of file systems 

The most familiar file systems make use of an underlying data storage device that offers 

access to an array of fixed-size blocks, sometimes called sectors, generally 512 bytes each. The 

file system software is responsible for organizing these sectors into files and directories, and 

keeping track of which sectors belong to which file and which are not being used. 



 

 
However, file systems need not make use of a storage device at all. A file system can be 

used to organize and represent access to any data, whether it be stored or dynamically generated 

(eg, from a network connection). 

Whether the file system has an underlying storage device or not, file systems typically have 

directories which associate file names with files, usually by connecting the file name to an index 

into a file allocation table of some sort, such as the FAT in an MS-DOS file system, or an inode 

in a Unix-like file system. Directory structures may be flat, or allow hierarchies where directories 

may contain subdirectories. In some file systems, file names are structured, with special syntax 

for filename extensions and version numbers. In others, file names are simple strings, and per- 

file metadata is stored elsewhere. 

Other bookkeeping information is typically associated with each file within a file system. 

The length of the data contained in a file may be stored as the number of blocks allocated for the 

file or as an exact byte count. The time that the file was last modified may be stored as the file's 

timestamp. Some file systems also store the file creation time, the time it was last accessed, and 

the time that the file's meta-data was changed. (Note that many early PC operating systems did 

not keep track of file times.) Other information can include the file's device type (e.g., block, 

character, socket, subdirectory, etc.), its owner user-ID and group-ID, and its access permission 

settings (e.g., whether the file is read-only, executable, etc.). 

The hierarchical file system was an early research interest of Dennis Ritchie of Unix 

fame; previous implementations were restricted to only a few levels, notably the IBM 

implementations, even of their early databases like IMS. After the success of Unix, Ritchie 

extended the file system concept to every object in his later operating system developments, such 

as Plan 9 and Inferno. 

Traditional file systems offer facilities to create, move and delete both files and 

directories. They lack facilities to create additional links to a directory (hard links in Unix), 

rename parent links (".." in Unix-like OS), and create bidirectional links to files.Traditional file 

systems also offer facilities to truncate, append to, create, move, delete and in-place modify files. 

They do not offer facilities to prepend to or truncate from the beginning of a file, let alone 

arbitrary insertion into or deletion from a file. The operations provided are highly asymmetric 

and lack the generality to be useful in unexpected contexts. 



 

 
For example, interprocess pipes in Unix have to be implemented outside of the file 

system because the pipes concept does not offer truncation from the beginning of files.Secure 

access to basic file system operations can be based on a scheme of access control lists or 

capabilities. Research has shown access control lists to be difficult to secure properly, which is 

why research operating systems tend to use capabilities. Commercial file systems still use access 

control lists. 

Arbitrary attributes can be associated on advanced file systems, such as XFS, xt2/ext3, 

some versions of UFS, and HFS+, using extended file attributes. This feature is implemented in 

the kernels of Linux, FreeBSD and Mac OS X operating systems, and allows metadata to be 

associated with the file at the file system level. This, for example, could be the author of a 

document, the character encoding of a plain-text document, or a checksum. 

 

TYPES OF FILE SYSTEMS 

File system types can be classified into disk file systems, network file systems and 

special purpose file systems. 

Disk file systems 

A disk file system is a file system designed for the storage of files on a data storage 

device, most commonly a disk drive, which might be directly or indirectly connected to the 

computer. Examples of disk file systems include FAT, FAT32, NTFS, HFS and HFS+, ext2, 

ext3, ISO 9660, ODS-5, and UDF. Some disk file systems are journaling file systems or 

versioning file systems. 

1.4.2 Flash file systems 

A flash file system is a file system designed for storing files on flash memory devices. 

These are becoming more prevalent as the number of mobile devices is increasing, and the 

capacity of flash memories catches up with hard drives. 

While a block device layer can run emulate hard drive behavior and store regular file 

systems on a flash device, this is suboptimal for several reasons: 

Erasing blocks: Flash memory blocks have to be explicitly erased before they can be written to. 

The time taken to erase blocks can be significant, thus it is beneficial to erase unused blocks 

while the device is idle. 



 

Random access: Disk file systems are optimized to avoid disk seeks whenever possible, due to 

the high cost of seeking. Flash memory devices impose no seek latency. 

Wear levelling: Flash memory devices tend to "wear out" when a single block is repeatedly 

overwritten; flash file systems try to spread out writes as evenly as possible. 

It turns out that log-structured file systems have all the desirable properties for a flash file 

system. Such file systems include JFFS2 and YAFFS. 

Database file systems 

A new concept for file management is the concept of a database-based file system. 

Instead of, or in addition to, hierarchical structured management, files are identified by their 

characteristics, like type of file, topic, author, or similar metadata. 

Transactional file systems 

This is a special kind of file system in that it logs events or transactions to files. Each 

operation that you do may involve changes to a number of different files and disk structures. In 

many cases, these changes are related, meaning that it is important that they all be executed at 

the same time. Take for example a bank sending another bank some money electronically. The 

bank's computer will "send" the transfer instruction to the other bank and also update its own 

records to indicate the transfer has occurred. If for some reason the computer crashes before it 

has had a chance to update its own records, then on reset, there will be no record of the transfer 

but the bank will be missing some money. 

A transactional system can rebuild the actions by resynchronizing the "transactions" on 

both ends to correct the failure. All transactions can be saved as well, providing a complete 

record of what was done and where. This type of file system is designed and intended to be fault 

tolerant, and necessarily incurs a high degree of overhead. 

Network file systems 

A network file system is a file system that acts as a client for a remote file access 

protocol, providing access to files on a server. Examples of network file systems include clients 

for the NFS, SMB protocols, and file-system-like clients for FTP and WebDAV. 

1.4.6 Special purpose file systems 

A special purpose file system is basically any file system that is not a disk file system or 

network file system. This includes systems where the files are arranged dynamically by software, 



 

 
intended for such purposes as communication between computer processes or temporary file 

space. 

Special purpose file systems are most commonly used by file-centric operating systems 

such as Unix. Examples include the procfs (/proc) file system used by some Unix variants, 

which grants access to information about processes and other operating system features. Deep 

space science exploration craft, like Voyager I & II used digital tape based special file systems. 

Most modern space exploration craft like Cassini-Huygens used Real-time operating system file 

systems or RTOS influenced file systems. The Mars Rovers are one such example of an RTOS 

file system, important in this case because they are implemented in flash memory. 

Flat file systems 

In a flat file system, there are no subdirectories—everything is stored at the same (root) 

level on the media, be it a hard disk, floppy disk, etc. While simple, this system rapidly becomes 

inefficient as the number of files grows, and makes it difficult for users to organise data into 

related groups. 

Like many small systems before it, the original Apple Macintosh featured a flat file 

system, called Macintosh File System. Its version of Mac OS was unusual in that the file 

management software (Macintosh Finder) created the illusion of a partially hierarchical filing 

system on top of MFS. This structure meant that every file on a disk had to have a unique name, 

even if it appeared to be in a separate folder. MFS was quickly replaced with Hierarchical File 

System, which supported real directories. 

File systems and operating systems 

Most operating systems provide a file system, and is an integral part of any modern 

operating system. Early microcomputer operating systems' only real task was file management 

— a fact reflected in their names (see DOS). Some early operating systems had a separate 

component for handling file systems which was called a disk operating system. On some 

microcomputers, the disk operating system was loaded separately from the rest of the operating 

system. On early operating systems, there was usually support for only one, native, 

unnamed file system; for example, CP/M supports only its own file system, which might be 

called "CP/M file system" if needed, but which didn't bear any official name at all. 

FILE ORGANIZATION 

1. A file is organized logically as a sequence of records. 



 

2. Records are mapped onto disk blocks. 

3. Files are provided as a basic construct in operating systems, so we assume the 

existence of an underlying file system. 

4. Blocks are of a fixed size determined by the operating system. 

5. Record sizes vary. 

6. In relational database, tuples of distinct relations may be of different sizes. 

7. One approach to mapping database to files is to store records of one length in a given file. 

8. An alternative is to structure files to accommodate variable-length records. (Fixedlength 

is easier to implement.) 

 

ALLOCATING AND FREEZING SPACE 

 

Free Space Management 

To keep track of the free space, the file system maintains a free space list which records 

all disk blocks which are free. We search the free space list to create a file for the required 

amount of space and allocate it to the new file. This space is then removed from the free space 

list. When a file is deleted, its disk space is added to the free space list. 

Bit-Vector 

Frequently, the free-space list is implemented as a bit map or bit vector. Each block is 

represented by a 1 bit. If the block is free, the bit is 0; if the block is allocated, the bit is 1. For 

example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 are 

free, and the rest of the blocks are allocated. The free-space bit map would be: 

11000011000000111001111110001111… 

The main advantage of this approach is that it is relatively simple and efficient to find n 

consecutive free blocks on the disk. Unfortunately, bit vectors are inefficient unless the 

entirevector is kept in memory for most accesses. Keeping it main memory is possible for 

smaller disks such as on microcomputers, but not for larger ones. 

Linked List 

Grouping 

A modification of the free-list approach is to store the addresses of n free blocks in the 

first free block. The first n-1 of these are actually free. The last one is the disk address of 

another block containing addresses of another n free blocks. The importance of this 



 

 
implementation is that addresses of a large number of free blocks can be found quickly. 

 

 

Counting 

Another approach is to take advantage of the fact that, generally, several contiguous 

blocks may be allocated or freed simultaneously, particularly when contiguous allocation is used. 

Thus, rather than keeping a list of free disk addresses, the address of the first free block is kept 

and the number n of free contiguous blocks that follow the first block. Each entry in the free- 

space list then consists of a disk address and a count. Although each entry requires more space 

than would a simple disk address, the overall list will be shorter, as long as the count is generally 

greater than 1. 

Contiguous allocation 

The contiguous allocation method requires each file to occupy a set of contiguous address 

on the disk. Disk addresses define a linear ordering on the disk. Notice that, with this ordering, 

accessing block b+1 after block b normally requires no head movement. When head movement 

is needed (from the last sector of one cylinder to the first sector of the next cylinder), it is only 

one track. Thus, the number of disk seeks required for accessing contiguous allocated files in 

minimal, as is seek time when a seek is finally needed.Contiguous allocation of a file is defined 

by the disk address and the length of the first block. 

If the file is n blocks long, and starts at location b, then it occupies blocks b, b+1, b+2, …, 

b+n-1. The directory entry for each file indicates the address of the starting block and the 

length of the area allocated for this file. 

The difficulty with contiguous allocation is finding space for a new file. If the file to be 

created is n blocks long, then the OS must search for n free contiguous blocks. First-fit, bestfit, 

and worst-fit strategies (as discussed in Chapter 4 on multiple partition allocation) are the most 

common strategies used to select a free hole from the set of available holes. Simulations have 

shown that both first-fit and best-fit are better than worst-fit in terms of both time storage 

utilization. Neither first-fit nor best-fit is clearly best in terms of storage utilization, but first-fit is 

generally faster. 

These algorithms also suffer from external fragmentation. As files are allocated and 

deleted, the free disk space is broken into little pieces. External fragmentation exists when 

enough total disk space exists to satisfy a request, but this space not contiguous; storage is 



 

fragmented into a large number of small holes. 

Linked allocation 

The problems in contiguous allocation can be traced directly to the requirement that the 

spaces be allocated contiguously and that the files that need these spaces are of different sizes. 

These requirements can be avoided by using linked allocation. 

In linked allocation, each file is a linked list of disk blocks. The directory contains a 

pointer to the first and (optionally the last) block of the file. For example, a file of 5 block which 

starts at block 4, might continue at block 7, then block 16, block 10, and finally block 27. Each 

block contains a pointer to the next block and the last block contains a NIL pointer. 

The value -1 may be used for NIL to differentiate it from block 0. 

Indexed allocation 

The indexed allocation method is the solution to the problem of both contiguous and 

linked allocation. This is done by bringing all the pointers together into one location called 

the index block. Of course, the index block will occupy some space and thus could be considered 

as an overhead of the method. In indexed allocation, each file has its own index block, which is 

an array of disk sector of addresses. The ith entry in the index block points to the ith sector of the 

file. The directory contains the address of the index block of a file. To read the ith sector of the 

file, the pointer in the ith index block entry is read to find the desired 

sector. Indexed allocation supports direct access, without suffering from external fragmentation. 

Any free block anywhere on the disk may satisfy a request for more space. 

FILE DESCRIPTORS AND ACCESS CONTROL 

 

Aims and Objectives 

In this lesson we will learn about the file descriptors and access control. 

The objectives of this lesson is to make the candidate aware of the following 

a) file descriptors 

b) operations on file descriptor 

a. creating 

b. deriving 

c. modifying, etc. 

c) access control matrix 



 

 

Introduction 

A file descriptor or file control block is a control block containing information the system 

needs to manage a file. The file descriptor is controlled by the operating system and is brought to 

the primary storage when a file is opened. A file descriptor contains information regarding (i) 

symbolic file name, (ii) location of file, (iii) file organization 

(sequential, indexed, etc.), (iv) device type, (v) access control data, (vi) type (data file, object 

program, C source program, etc.), (vii) disposition (temporary or permanent), (viii) date and 

time of creation, (ix) destroy date, (x) last modified date and time, (xi) access activity counts 

(number of reads, etc.). 

File descriptor in programming 

In computer programming, a file descriptor is an abstract key for accessing a file. 

The term is generally used in POSIX operating systems. In Microsoft Windows terminology 

and in the context of the C standard I/O library, "file handle" is preferred, though the latter 

case is technically a different object (see below). 

In POSIX, a file descriptor is an integer, specifically of the C type int. There are 3 

standard POSIX file descriptors which presumably every process (save perhaps a daemon) 

should expect to have: 

Integer value Name 

0 Standard Input (stdin) 

1 Standard Output (stdout) 

2 Standard Error (stderr) 

Generally, a file descriptor is an index for an entry in a kernel-resident data structure containing 

the details of all open files. In POSIX this data structure is called a file descriptor table, and each 

process has its own file descriptor table. The user application passes the abstract key to the 

kernel through a system call, and the kernel will access the file on behalf of the application, 

based on the key. The application itself cannot read or write the file descriptor table directly. In 

Unix-like systems, file descriptors can refer to files, directories, block or character devices (also 

called "special files"), sockets, FIFOs (also called named pipes), or unnamed pipes. 

The FILE * file handle in the C standard I/O library routines is technically a pointer to a 

data structure managed by those library routines; one of those structures usually includes an 



 

actual low level file descriptor for the object in question on Unix-like systems. Since file handle 

refers to this additional layer, it is not interchangeable with file descriptor. 

To further complicate terminology, Microsoft Windows also uses the term file handle to refer to 

the more low-level construct, akin to POSIX's file descriptors. Microsoft's C libraries also 

provide compatibility functions which "wrap" these native handles to support the POSIX-like 

convention of integer file descriptors as detailed above. 

A program is passed a set of ``open file descriptors'', that is, pre-opened files. A 

setuid/setgid program must deal with the fact that the user gets to select what files are open and 

to what (within their permission limits). A setuid/setgid program must not assume that opening a 

new file will always open into a fixed file descriptor id, or that the open will succeed at all. It 

must also not assume that standard input (stdin), standard output (stdout), and standard error 

(stderr) refer to a terminal or are even open. 

OPERATIONS ON FILE DESCRIPTORS 

A modern Unix typically provides the following operations on file descriptors. 

Creating file descriptors 

open(), open64(), creat(), creat64() 

socket() 

socketpair() 

pipe() 

Deriving file descriptors 

fileno() 

dirfd() 

Operations on a single file descriptor 

read(), write() 

recv(), send() 

recvmsg(), sendmsg() (inc. allowing sending FDs) 

sendfile() 

lseek(), lseek64() 

fstat(), fstat64() 

fchmod() 

fchown() 



 

 
fdopen() 

gzdopen() 

ftruncate() 

15.4.4 Operations on multiple file descriptors 

select(), pselect() 

poll(), epoll() 

Operations on the file descriptor table 

close() 

dup() 

dup2() 

fcntl (F_DUPFD) 

fcntl (F_GETFD and F_SETFD) 

Operations that modify process state 

fchdir(): sets the process's current working directory based on a directory file 

descriptor 

mmap(): maps ranges of a file into the process's address space 

File locking 

flock() 

fcntl (F_GETLK, F_SETLK and F_SETLKW) 

lockf() 

Sockets 

connect() 

bind() 

listen() 

accept(): creates a new file descriptor for an incoming connection 

getsockname() 

getpeername() 

getsockopt(), setsockopt() 

shutdown(): shuts down one or both halves of a full duplex connection 

 

 

 

 
 

 

 

 

 



 

 
 

 

Reference :  
 
1. LelandL.Beck,System Software:An Introduction to Systems Programming,Pearson,Third 

Edition.  

2. 2 H.M.Deitel,Operating Systems, 2nd Edition,Perason, 2003. 

 
 
Prepared by :  
 

M.Balasubramaniyam,  

Assistant Professor,  

Department of BCA,  

Vidyasagar College of arts and science,  

Udumalpet.  
 

 

Reference Website : 
 

 www.studoc.com 


	Introduction
	System Software and Machine Architecture
	Assembler Design
	Basic Assembler Functions:
	Single-pass Assembler:
	Pass-1
	Pass-2

	Assembler Design:
	Example Program:
	Object code for the example program:
	Machine-Dependent Features:
	Instruction formats and Addressing Modes
	1. Translations for the Instruction involving Register-Register addressing mode:
	4. Immediate Addressing Mode
	5. Indirect and PC-relative mode:

	Absolute Program
	3.2.5 Control Sections:
	secname CSECT
	Handling External Reference Case 1
	Case 2
	Case 3
	Object Code for the example program:
	Handling Expressions in Multiple Control Sections:
	 How to enforce this restriction
	ASSEMBLER DESIGN
	One-Pass Assembler
	Load-and-Go Assembler

	40 2021 J` CLOOP 302012
	If One-Pass needs to generate object code:
	Multi_Pass Assembler:
	Implementation Issues for Modified Two-Pass Assembler:
	Loaders and Linkers
	Basic Loader Functions
	Type of Loaders
	Absolute Loader
	Figure 3.3.1: The Role of Absolute Loader
	Begin
	end
	end (1)
	Begin (1)
	Loop
	Machine-Dependent Loader Features
	Relocation
	Methods for specifying relocation
	Program Linking
	How to implement EXTDEF and EXTREF
	Define record

	D LISTA 000040 ENDA 000054
	Refer record

	R LISTB ENDB LISTC ENDC R LISTA ENDA LISTC ENDC R LISTA  ENDA  LISTB  ENDB
	D LISTA  000040 ENDA 000054 R LISTB ENDB  LISTC  ENDC
	D LISTB 000060 ENDB 000070 R LISTA  ENDA  LISTC  ENDC
	D LISTC 000030 ENDC 000042 R LISTA ENDA  LISTB  ENDB
	Algorithm and Data structures for a Linking Loader
	Program Logic for Pass 1
	Program Logic for Pass 2

	SYSTEM SOFTWARE AND OPERATING SYSTEMS
	MACHINE DEPENDANT COMPILER FEATURES:
	Introduction:
	Definition for compiler:
	Basic compiler function:
	Grammar:
	Lexical analysis:
	Syntactical analysis (or) parsing:
	Code generation:
	Basis steps to be followed in the compilation process:
	Intermediate form of the program:
	Quadruples:
	Form of Quadruples:
	For Example: 1
	Example: 2
	Machine dependent code optimization:
	Basic blocks:
	Rearrangement of Quadruples for code optimization:
	Figure: rearrangement for Quadruples for code optimization

	MACHINE INDEPENDENT FEATURES
	Machine independent compiler features:
	Structure variable:
	(A) in row major order
	B) In column major order:

	(A)
	ii. Storage allocation:
	allocation.
	Block structured languages:

	FIGURE (A)
	COMPILER DESIGN OPTIONS
	Introduction:
	Division into passes:
	Interpreters:
	Advantages interpreters
	P-code compilers:[byte code compiler]:
	Translation and execution using a p- code compiler:
	Advantages of p-code compiler:
	Design of pseudo-machine (or) p-code machine
	Compiler-compilers
	Advantages of compiler – compilers

	OPERATING SYSTEM
	PROCESS- DEFINITIONS OF PROCESS
	PROCESS STATES
	PROCESS STATE TRANSITIONS
	New to Ready
	Ready to Running
	dispatch (process name): ready->running Running to Terminated
	Running to Ready
	timerrunout (process name): running->ready
	Running to Waiting
	Waiting to Ready
	Running to Block
	block (process name): running->blocked
	wakeup (process name): blocked->ready INTERRUPT
	Difference between polling and interrupts
	Interrupt processing
	Interrupt classes
	SVC (Supervisor call) interrupts
	I/O interrupts
	External interrupts
	Restart interrupts
	Program check interrupts
	Machine check interrupts

	STORAGE MANAGEMENT
	Storage Hierarchy
	Storage management strategies
	Fetch strategies
	Placement strategies
	Replacement strategies

	DEFINITION OF CONTIGUOUS MEMORY ALLOCATION
	DEFINITION NON-CONTIGUOUS MEMORY ALLOCATION
	SINGLE USER CONTIGUOUS STORAGE ALLOCATION
	Advantages and Disadvantages of Single Contiguous Allocation Advantages
	Disadvantages

	OVERLAYS
	Overlay Structure
	Protection in a Single-User System
	Boundary register
	Single-Stream Batch Processing

	REAL MEMORY MANAGEMENT TECHNIQUES
	Fixed partition multiprogramming
	Advantage of Multiprogramming
	Fixed Partition Multiprogramming: Absolute Translation and Loading
	Fixed partition multiprogramming: relocatable translation and loading
	Protection in multiprogramming systems
	Fragmentation in fixed partition multiprogramming

	VARIABLE PARTITION MULTIPROGRAMMING
	Variable partition multiprogramming characteristics
	Coalescing holes
	Storage compaction
	Storage placement strategies
	2. First fit strategy
	3. Worst fit strategy
	First fit strategy
	Best fit strategy
	Worst fit strategy
	Unit –IV

	VIRTUAL STORAGE
	Virtual storage management strategies
	Page replacement algorithms

	FIFO
	Optimal replacement
	Least recently used
	Working sets
	Demand paging
	Page size

	PROCESSOR MANAGEMENT:
	Introduction:
	Preemptive Vs Non-Preemptive
	Priorities
	Deadline scheduling

	UNIT –V
	DEVICE AND DISK MANAGEMENT
	Introduction
	Need for Disk Scheduling

	FILE SYSTEMS AND ORGANIZATION
	Functions of file systems
	Disk file systems
	1.4.2 Flash file systems
	Database file systems
	Transactional file systems
	Network file systems
	1.4.6 Special purpose file systems
	Flat file systems
	File systems and operating systems

	ALLOCATING AND FREEZING SPACE
	Free Space Management
	Bit-Vector
	Linked List Grouping
	Counting
	Contiguous allocation
	Linked allocation
	Indexed allocation

	FILE DESCRIPTORS AND ACCESS CONTROL
	Aims and Objectives
	Introduction
	File descriptor in programming
	Integer value Name
	Creating file descriptors
	Deriving file descriptors
	Operations on a single file descriptor
	15.4.4 Operations on multiple file descriptors
	Operations on the file descriptor table
	Operations that modify process state
	File locking


